1
|
Xia C, Li X, Wu Y, Suharti S, Unpaprom Y, Pugazhendhi A. A review on pollutants remediation competence of nanocomposites on contaminated water. ENVIRONMENTAL RESEARCH 2023; 222:115318. [PMID: 36693465 DOI: 10.1016/j.envres.2023.115318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Clean freshwater has been required for drinking, sanitation, agricultural activities, and industry, as well as for the development and maintenance of the eco - systems on which all livelihoods rely. Water contamination is currently a significant concern for researchers all over the world; hence it is essential that somehow this issue is resolved as soon as possible. It is now recognised as one of the most important research areas in the world. Current wastewater treatment techniques degrade a wide range of wastewaters efficiently; however, such methods have some limitations. Recently, nanotechnology has emerged as a wonderful solution, and researchers are conducting research in this water remediation field with a variety of potential applications. The pollutants remediation capability of nanocomposites as adsorbents, photocatalysts, magnetic separation, and so on for contaminant removal from contaminated water has been examined in this study. This study has spotlighted the most significant nanocomposites invention reported to date for contaminated and effluent remediation, as well as a research gap as well as possible future perspectives.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xiang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Suharti Suharti
- Department of Chemistry, State University of Malang, Malang, East Java, Indonesia
| | - Yuwalee Unpaprom
- Program in Biotechnology, Maejo University, Chiang Mai, Thailand
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
2
|
Guo D, Huang S, Zhu Y. The Adsorption of Heavy Metal Ions by Poly (Amidoamine) Dendrimer-Functionalized Nanomaterials: A Review. NANOMATERIALS 2022; 12:nano12111831. [PMID: 35683687 PMCID: PMC9182522 DOI: 10.3390/nano12111831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023]
Abstract
Rapid industrialization has resulted in serious heavy metal pollution. The removal of heavy metal ions from solutions is very important for environmental safety and human health. Poly (amidoamine) (PAMAM) dendrimers are artificial macromolecular materials with unique physical and chemical properties. Abundant amide bonds and amino functional groups provide them with a high affinity for heavy metal ions. Herein, PAMAM-functionalized adsorbents are reviewed in terms of different nanomaterial substrates. Approaches in which PAMAM is grafted onto the surfaces of substrates are described in detail. The adsorption isotherms and kinetics of these adsorbents are also discussed. The effects of PAMAM generation, pH, adsorbent dosage, adsorption time, thermodynamics, and ionic strength on adsorption performance are summarized. Adsorption mechanisms and the further functionalization of PAMAM-grafted adsorbents are reviewed. In addition to the positive results, existing problems are also put forward in order to provide a reference for the optimization of PAMAM-grafted adsorbents of heavy metal ions.
Collapse
Affiliation(s)
- Dandan Guo
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China;
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
- Qian Xuesen Collaborative Research Center for Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Shaohua Huang
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China;
- Qian Xuesen Collaborative Research Center for Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
- Correspondence: (S.H.); (Y.Z.)
| | - Yan Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
- Correspondence: (S.H.); (Y.Z.)
| |
Collapse
|
3
|
Geng X, Kong X, Geng S, Qu R, Wang J, Zhang Y, Sun C, Ji C. Conductive Aramid Fibers from Electroless Silver Plating of Crosslinked HPAMAM-Modified PPTA: Preparation and Properties. ACS OMEGA 2022; 7:17014-17023. [PMID: 35647446 PMCID: PMC9134384 DOI: 10.1021/acsomega.2c00143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
Conductive aramid (PPTA) fibers are highly needed for making flexible conductive materials, antistatic materials, and electromagnetic shielding materials. In this work, silver-plated conductive PPTA fibers with high conductivity and excellent mechanical properties were prepared by the electroless plating of PPTA fibers modified with crosslinked hyperbranched polyamide-amine (HPAMAM). The crosslinked HPAMAM creates a stable interface between the PPTA fibers and the silver plating. The morphology and physicochemical properties of the modified and the silver-plated fibers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Three epoxy crosslinking agents with different chain lengths were used to crosslink HPAMAM, and the effects of HPAMAM concentration, crosslinking agent dosage, and crosslinking time on the resistance of the fibers were studied. The long chain crosslinking agent appears to be beneficial to silver plating. The lowest resistance (0.067 Ω/cm) was attained when HPAMAM was modified by diethylene glycol diglycidyl ether (1:1 molar ratio), and 20 g/L HPAMAM was used to modify the PPTA fibers. The tensile strength of the original PPTA fibers decreased by only 3% or less after silver plating.
Collapse
Affiliation(s)
- Xue Geng
- School
of Chemistry and Materials Science, Ludong
University, Yantai 264025, China
- Yantai
Research Institute for the Transformation of Old and New Kinetic Forces, Yantai 264025, China
| | - Xiangyu Kong
- School
of Chemistry and Materials Science, Ludong
University, Yantai 264025, China
- Yantai
Research Institute for the Transformation of Old and New Kinetic Forces, Yantai 264025, China
| | - Shengnan Geng
- School
of Chemistry and Materials Science, Ludong
University, Yantai 264025, China
- Yantai
Research Institute for the Transformation of Old and New Kinetic Forces, Yantai 264025, China
| | - Rongjun Qu
- School
of Chemistry and Materials Science, Ludong
University, Yantai 264025, China
- Yantai
Research Institute for the Transformation of Old and New Kinetic Forces, Yantai 264025, China
| | - Jiafei Wang
- School
of Chemistry and Materials Science, Ludong
University, Yantai 264025, China
- Yantai
Research Institute for the Transformation of Old and New Kinetic Forces, Yantai 264025, China
| | - Ying Zhang
- School
of Chemistry and Materials Science, Ludong
University, Yantai 264025, China
- Yantai
Research Institute for the Transformation of Old and New Kinetic Forces, Yantai 264025, China
| | - Changmei Sun
- School
of Chemistry and Materials Science, Ludong
University, Yantai 264025, China
- Yantai
Research Institute for the Transformation of Old and New Kinetic Forces, Yantai 264025, China
| | - Chunnuan Ji
- School
of Chemistry and Materials Science, Ludong
University, Yantai 264025, China
- Yantai
Research Institute for the Transformation of Old and New Kinetic Forces, Yantai 264025, China
| |
Collapse
|
4
|
Wang Q, Zhu S, Xi C, Zhang F. A Review: Adsorption and Removal of Heavy Metals Based on Polyamide-amines Composites. Front Chem 2022; 10:814643. [PMID: 35308790 PMCID: PMC8931339 DOI: 10.3389/fchem.2022.814643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the problem of heavy metal pollution has become increasingly prominent, so it is urgent to develop new heavy metal adsorption materials. Compared with many adsorbents, the polyamide-amine dendrimers (PAMAMs) have attracted extensive attention of researchers due to its advantages of macro-molecular cavity, abundant surface functional groups, non-toxicity, high efficiency and easy modification. But in fact, it is not very suitable as an adsorbent because of its solubility and difficulty in separation, which also limits its application in environmental remediation. Therefore, in order to make up for the shortcomings of this material to a certain extent, the synthesis and development of polymer composite materials based on PAMAMs are increasingly prominent in the direction of solving heavy metal pollution. In this paper, the application of composites based on PAMAMs and inorganic or organic components in the adsorption of heavy metal ions is reviewed. Finally, the prospects and challenges of PAMAMs composites for removal of heavy metal ions in water environment are discussed.
Collapse
|
5
|
Zheng M, Wei Y, Ren J, Dai B, luo W, Ma M, Li T, Ma Y. 2-aminopyridine functionalized magnetic core–shell Fe3O4@polypyrrole composite for removal of Mn (VII) from aqueous solution by double-layer adsorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Geng X, Qu R, Kong X, Geng S, Zhang Y, Sun C, Ji C. Facile Synthesis of Cross-linked Hyperbranched Polyamidoamines Dendrimers for Efficient Hg(Ⅱ) Removal From Water. Front Chem 2021; 9:743429. [PMID: 34595155 PMCID: PMC8476761 DOI: 10.3389/fchem.2021.743429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Dendrimers as commonly used metal ions adsorption materials have the advantages of good adsorption performance and high reuse rate, but the high cost limits its extensive use. Compared with dendrimers, hyperbranched dendrimers have similar physical and chemical properties and are more economical. Therefore, hyperbranched dendrimers are more suitable for industrial large-scale adsorption. The hyperbranched polyamidoamine (HPAMAM) gels were prepared by cross-linking hyperbranched polyamidoamine (HPAMAM-ECH-x and HPAMAM-EGDE-x) with different amounts of epichlorohydrin (ECH) and ethylene glycol diglycidyl ether (EGDE), respectively. The as-synthesized adsorbents were characterized by FT-IR, SEM and XPS. The prepared adsorbents were used to adsorb Hg(Ⅱ) in aqueous solution, and the effects of solution pH, contact time, temperature and initial concentration of metal ion on the adsorption capacity were investigated. The effect of solution pH indicated that the optimum condition to Hg(Ⅱ) removing was at pH 5.0. The adsorption kinetic curves of the two kinds of materials were in accordance with the pseudo-second-order model. For the HPAMAM-ECH samples, the adsorption thermodynamic curves fitted the Langmuir model, while for the HPAMAM-EGDE samples, both Langmuir and Freundlich equations fitted well. The maximum adsorption capacity of HPAMAM-ECH-3 obtained from Langmuir model toward Hg(Ⅱ) was 3.36 mmol/g at pH 5.0 and 35°C.
Collapse
Affiliation(s)
- Xue Geng
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| | - Rongjun Qu
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| | - Xiangyu Kong
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| | - Shengnan Geng
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| | - Ying Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| | - Changmei Sun
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| | - Chunnuan Ji
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| |
Collapse
|
7
|
Viltres H, López YC, Leyva C, Gupta NK, Naranjo AG, Acevedo–Peña P, Sanchez-Diaz A, Bae J, Kim KS. Polyamidoamine dendrimer-based materials for environmental applications: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Baskın D, Yılmaz Ö, Islam MN, Tülü M, Koyuncu İ, Eren T. Metal adsorption properties of multi‐functional
PAMAM
dendrimer based gels. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dilgeş Baskın
- Faculty of Science and Arts, Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - Özge Yılmaz
- Faculty of Science and Arts, Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - Muhammad Nazrul Islam
- Faculty of Science and Arts, Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - Metin Tülü
- Faculty of Science and Arts, Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - İkbal Koyuncu
- Faculty of Science and Arts, Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - Tarik Eren
- Faculty of Science and Arts, Department of Chemistry Yildiz Technical University Istanbul Turkey
| |
Collapse
|
9
|
Li X, Zhang J, Xie H, Pan Y, Liu J, Huang Z, Long X, Xiao H. Cellulose-based adsorbents loaded with zero-valent iron for removal of metal ions from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33234-33247. [PMID: 32533473 DOI: 10.1007/s11356-020-09390-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Sawdust loaded with zero-valent iron (S-ZVI) was prepared using a liquid phase reduction method for removing heavy metal ions from contaminated water. Surface chemistry and morphology of adsorbents were characterized with Fourier transform infrared (FT-IR) spectrometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), SEM-mapping, EDX, and X-ray photoelectron spectrum (XPS). The results demonstrated that the zero-valent iron was successfully loaded onto the sawdust. The impact of various factors such as pH, initial metal ion concentration, temperature, and contact time on the removal capability of the adsorbents was systematically investigated. The equilibrium adsorption data showed that the adsorption of arsenic ions and Cr(III) followed the Langmuir model well, and the maximum adsorption reached 111.37 and 268.7 mg/g in an aqueous solution system. In addition, the adsorption kinetics was more accurately described by the pseudo-second-order model, suggesting the domination of chemical adsorption. Meanwhile, the results on recyclability indicated that the high performance of S-ZVI on the removal of arsenic ions was well maintained after three regeneration cycles. The adsorption mechanism revealed in this work suggested that S-ZVI improved the dispersion of ZVI by minimizing the agglomeration, thus leading to highly effective adsorption via chelation, electrostatic interaction, and redox reaction.
Collapse
Affiliation(s)
- Xiaoning Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Jinyao Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Hongtian Xie
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Yuanfeng Pan
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Jie Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Zhihong Huang
- ShengQing Environmental Protection Ltd. Co., Kunming, 650093, Yunnan, China
| | - Xiang Long
- ShengQing Environmental Protection Ltd. Co., Kunming, 650093, Yunnan, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
10
|
Pawlaczyk M, Schroeder G. Efficient Removal of Ni(II) and Co(II) Ions from Aqueous Solutions Using Silica-based Hybrid Materials Functionalized with PAMAM Dendrimers. SOLVENT EXTRACTION AND ION EXCHANGE 2020. [DOI: 10.1080/07366299.2020.1766742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Mateusz Pawlaczyk
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
11
|
New Ionic Carbosilane Dendrons Possessing Fluorinated Tails at Different Locations on the Skeleton. Molecules 2020; 25:molecules25040807. [PMID: 32069852 PMCID: PMC7070408 DOI: 10.3390/molecules25040807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/03/2023] Open
Abstract
The fluorination of dendritic structures has attracted special attention in terms of self-assembly processes and biological applications. The presence of fluorine increases the hydrophobicity of the molecule, resulting in a better interaction with biological membranes and viability. In addition, the development of 19F magnetic resonance imaging (19F-MRI) has greatly increased interest in the design of new fluorinated structures with specific properties. Here, we present the synthesis of new water-soluble fluorinated carbosilane dendrons containing fluorinated chains in different positions on the skeleton, focal point or surface, and their preliminary supramolecular aggregation studies. These new dendritic systems could be considered as potential systems to be employed in drug delivery or gene therapy and monitored by 19F-MRI.
Collapse
|
12
|
Godini K, Tahergorabi M, Naimi-Joubani M, Shirzad-Siboni M, Yang JK. Application of ZnO nanorods doped with Cu for enhanced sonocatalytic removal of Cr(VI) from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2691-2706. [PMID: 31836985 DOI: 10.1007/s11356-019-07165-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
The aim of this research was to develop a simple and inexpensive process for reduction of Cr(VI) to Cr(III). Zinc oxide nanoparticles were synthesized with an easy co-precipitation procedure, and the addition of Cu2+ doping agent effectively enhanced the Cr(VI) reduction in the presence of ultrasound (US). XRD, FT-IR, FE-SEM, EDX, VSM, and XPS were used to determine the structural specifications of the zinc oxide nanoparticles. Under optimal conditions such as pH 3, initial Cr(VI) content of 20 mg/L, and catalyst dosage of 0.8 g/L, the ultrasonic/Cu-ZnO process showed a higher sonocatalytic activity (96.83%) than ultrasonic/ZnO (67.36%) after 60 min. By increasing pH and Cr(VI) concentration, the removal efficacy of Cr(VI) declined. The experimental data was well described with the first-order kinetic model. When initial Cr(VI) concentration increased from 10 to 50 mg/L, the first-order rate constant declined from 0.2326 to 0.0019 min-1 and electrical energy per order (EEO) enhanced from 19.81 to 2425.26 kWh/m3. Also, the ultrasonic/Cu-ZnO system exhibited considerable sonocatalytic performance in Cr(VI) reduction in the presence of hydrogen peroxide and citric acid, and complete removal was achieved within 60 min. The presence of anions negatively affected Cr(VI) reduction. Complete reduction was attained when ultrasound was applied at a power of 100 W. The catalyst activity was well maintained up to six consecutive cycles. In addition, the removal efficiency was approximately 62 and 65% for field water and real electroplating wastewater samples, respectively.
Collapse
Affiliation(s)
- Kazem Godini
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mahsa Tahergorabi
- Department of Environmental Health Engineering, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mohammad Naimi-Joubani
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Shirzad-Siboni
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran.
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, South Korea
| |
Collapse
|
13
|
Pedziwiatr-Werbicka E, Milowska K, Dzmitruk V, Ionov M, Shcharbin D, Bryszewska M. Dendrimers and hyperbranched structures for biomedical applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|