1
|
Gao Q, Shi W, Chen W. Synthesis and photocatalytic activity of cation-doped titanium oxynitrides (Ti 2.85-xM xO 4N, M = Zn, Co, Cu). Dalton Trans 2024; 53:17071-17082. [PMID: 39360746 DOI: 10.1039/d4dt02378a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The utilization of visible light in photocatalytic semiconductors is restricted by the presence of a wide energy bandgap and fast electron-hole pair recombination. This study aims to address this limitation by synthesizing nitrogen- and cation-doped Cs0.68Ti1.83O4 at varying temperatures and subsequently analyzing the photocatalytic performance and mechanism. The optical experimental findings indicate that the co-doping of N/M (where M represents Zn, Co, or Cu) can considerably decrease the energy bandgap of Cs0.68Ti1.83O4 by regulating the energy band position and effectively suppressing the recombination of photogenerated carriers. Notably, at a temperature of 600 °C, the N/Cu co-doped Cs0.68Ti1.83O4 exhibits the smallest energy bandgap of 1.98 eV, thereby demonstrating superior photocatalytic performance. The photocatalytic degradation test of pollutants shows that the degradation efficiency of methylene blue solution in 120 minutes under light was 84%, which is the result of the interaction between ˙OH and ˙O2-. This study provides new possibilities for the study of co-doped modified photocatalytic materials.
Collapse
Affiliation(s)
- Qijing Gao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOF), School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China.
| | - Wenyan Shi
- Key Laboratory of Organic Compound Pollution Control Engineering (MOF), School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China.
| | - Wenqian Chen
- Key Laboratory of Organic Compound Pollution Control Engineering (MOF), School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China.
| |
Collapse
|
2
|
Fávaro YB, Fuziki MEK, Fidelis MZ, Abreu E, Tusset AM, Brackmann R, Lenzi GG. Sol-gel and Pechini niobium modified: synthesis, characterization and application in the 2,4-D herbicide degradation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:50-61. [PMID: 38054847 DOI: 10.1080/03601234.2023.2290428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In this work, a comparison was made between the synthesis of niobium-based materials (Nb2O5), both in terms of material characterization and catalytic performance. The methods used were chemical mixtures: modified sol-gel and Pechini. The materials were calcined at different temperatures (753, 873 and 993K) and characterized by the following techniques: photoacousticspectroscopy (PAS), zero charge point (pHPZC), scanning electron microscopy (SEM/EDS), thermogravimetric analysis (TGA/DTG) and X-ray diffraction (XRD). The photocatalytic process was carried out to evaluate the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under UV radiation (250 W mercury vapor lamp) and different experimental conditions. In addition, to better understand the influence of parameters such as pH, catalyst concentration (0.2, 0.5 and 0.8 g L-1) and calcination temperature, a Design of Experiments (DoE) was used. The results indicated that despite having similar structures and phases in the XRD analysis, the morphology presents two distinct surfaces, due to the preparation method. Differences in the synthesis method affected the catalytic activity in the parameters studied. Although the zero charge point values are close (6.18-6.36), we observed differences in the band gap depending on the calcination temperature. In the optimal condition studied, the catalyst prepared by the sol-gel method obtained the best results.
Collapse
Affiliation(s)
- Yuri B Fávaro
- Departamento de Engenharia Química, Universidade Tecnológica Federal Do Paraná, Ponta Grossa, Brazil
| | - Maria E K Fuziki
- Departamento de Engenharia Química, Universidade Estadual de Maringá, Maringá, Brazil
| | - Michel Z Fidelis
- Departamento de Engenharia Química, Universidade Estadual de Maringá, Maringá, Brazil
| | - Eduardo Abreu
- Departamento de Engenharia Química, Universidade Estadual de Maringá, Maringá, Brazil
| | - Angelo M Tusset
- Departamento de Engenharia de Produção, Universidade Tecnológica Federal Do Paraná, Ponta Grossa, Brazil
| | - Rodrigo Brackmann
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Pato Branco, Brazil
| | - Giane G Lenzi
- Departamento de Engenharia Química, Universidade Tecnológica Federal Do Paraná, Ponta Grossa, Brazil
| |
Collapse
|
3
|
Zhao Y, Zhang H, Hong L, Zou X, Song J, Han R, Chen J, Yu Y, Liu X, Zhao H, Zhang Z. A Multifunctional Dental Resin Composite with Sr-N-Doped TiO 2 and n-HA Fillers for Antibacterial and Mineralization Effects. Int J Mol Sci 2023; 24:ijms24021274. [PMID: 36674788 PMCID: PMC9861335 DOI: 10.3390/ijms24021274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Dental caries, particularly secondary caries, which is the main contributor to dental repair failure, has been the subject of extensive research due to its biofilm-mediated, sugar-driven, multifactorial, and dynamic characteristics. The clinical utility of restorations is improved by cleaning bacteria nearby and remineralizing marginal crevices. In this study, a novel multifunctional dental resin composite (DRC) composed of Sr-N-co-doped titanium dioxide (Sr-N-TiO2) nanoparticles and nano-hydroxyapatite (n-HA) reinforcing fillers with improved antibacterial and mineralization properties is proposed. The experimental results showed that the anatase-phase Sr-N-TiO2 nanoparticles were synthesized successfully. After this, the curing depth (CD) of the DRC was measured from 4.36 ± 0.18 mm to 5.10 ± 0.19 mm, which met the clinical treatment needs. The maximum antibacterial rate against Streptococcus mutans (S. mutans) was 98.96%, showing significant inhibition effects (p < 0.0001), which was experimentally verified to be derived from reactive oxygen species (ROS). Meanwhile, the resin exhibited excellent self-remineralization behavior in an SBF solution, and the molar ratio of Ca/P was close to that of HA. Moreover, the relative growth rate (RGR) of mouse fibroblast L929 indicated a high biocompatibility, with the cytotoxicity level being 0 or I. Therefore, our research provides a suitable approach for improving the antibacterial and mineralization properties of DRCs.
Collapse
Affiliation(s)
- Yuanhang Zhao
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Hong Zhang
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
| | - Lihua Hong
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
| | - Xinying Zou
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Jiazhuo Song
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Rong Han
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Jiawen Chen
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yiyan Yu
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Xin Liu
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Hong Zhao
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Zhimin Zhang
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
4
|
Krishnan S, Karim AV, Shriwastav A. Visible light responsive Cu-N/TiO 2 nanoparticles for the photocatalytic degradation of bisphenol A. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1527-1539. [PMID: 36178821 DOI: 10.2166/wst.2022.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Visible light active co-doped Cu-N/TiO2 photocatalyst was synthesized by the sol-gel method. The synthesized catalysts were characterized by X-ray diffraction (XRD), field-emission transmission electron microscope (FE-TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and UV-visible diffuse reflectance spectrophotometry (UV-vis DRS). The co-doping with Cu-N reduced the bandgap (∼2.83 eV) and extended the optical absorption range of TiO2 catalysts to the visible region. The incorporation of Cu and N on TiO2 lattice results in sub-conduction and valence band formation, which enhanced the photoactivity and electron-hole generation rate. The visible light activity of Cu-N/TiO2 was evaluated via photocatalytic degradation of bisphenol A (BPA) under blue LED illumination. The maximum BPA degradation of 42.7% was observed at 0.5 g L-1 catalyst dosage, initial pH of BPA solution = 8.2, and initial BPA concentration of 10 ppm. Further, a possible mechanism of photocatalytic degradation of BPA was also established.
Collapse
Affiliation(s)
- Sukanya Krishnan
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India E-mail:
| | - Ansaf V Karim
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India E-mail:
| | - Amritanshu Shriwastav
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India E-mail:
| |
Collapse
|
5
|
All-Printed Flexible Memristor with Metal–Non-Metal-Doped TiO2 Nanoparticle Thin Films. NANOMATERIALS 2022; 12:nano12132289. [PMID: 35808124 PMCID: PMC9268177 DOI: 10.3390/nano12132289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/17/2023]
Abstract
A memristor is a fundamental electronic device that operates like a biological synapse and is considered as the solution of classical von Neumann computers. Here, a fully printed and flexible memristor is fabricated by depositing a thin film of metal–non-metal (chromium-nitrogen)-doped titanium dioxide (TiO2). The resulting device exhibited enhanced performance with self-rectifying and forming free bipolar switching behavior. Doping was performed to bring stability in the performance of the memristor by controlling the defects and impurity levels. The forming free memristor exhibited characteristic behavior of bipolar resistive switching with a high on/off ratio (2.5 × 103), high endurance (500 cycles), long retention time (5 × 103 s) and low operating voltage (±1 V). Doping the thin film of TiO2 with metal–non-metal had a significant effect on the switching properties and conduction mechanism as it directly affected the energy bandgap by lowering it from 3.2 eV to 2.76 eV. Doping enhanced the mobility of charge carriers and eased the process of filament formation by suppressing its randomness between electrodes under the applied electric field. Furthermore, metal–non-metal-doped TiO2 thin film exhibited less switching current and improved non-linearity by controlling the surface defects.
Collapse
|
6
|
Karim AV, Krishnan S, Shriwastav A. An overview of heterogeneous photocatalysis for the degradation of organic compounds: A special emphasis on photocorrosion and reusability. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Kumar JA, Krithiga T, Narendrakumar G, Prakash P, Balasankar K, Sathish S, Prabu D, Pushkala DP, Marraiki N, Ramu AG, Choi D. Effect of Ca 2+ ions on naphthalene adsorption/desorption onto calcium oxide nanoparticle: Adsorption isotherm, kinetics and regeneration studies. ENVIRONMENTAL RESEARCH 2022; 204:112070. [PMID: 34555407 DOI: 10.1016/j.envres.2021.112070] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The adsorptive nature of calcium oxide nanoparticles in aqueous sample of naphthalene in presence of Ca2+ ions was estimated. Enhanced efficiency of calcium oxide regeneration (90%) with the aid of calcium chloride in the solution concentration of 0.002-0.1 M was depicted. The less degree of toxic naphthalene desorption merged with SEM, FTIR and XRD characterization data portrays the importance of naphthalene adsorption onto calcium oxide using calcium chloride for regeneration. Batch adsorption studies were performed to evaluate the operating parameters such as pH, naphthalene concentration, contact time and impact of Ca2+ on naphthalene study. The adsorption isotherm of naphthalene on calcium oxide nanoparticle was described by Langmuir, Freundlich, Temkin and Dubinin Radushkevich and theoretical maximum monolayer adsorption capacity was found to be 63.81 mg/g at 303 K. The adsorption kinetic best fitted with pseudo second order kinetic model. The positive influence of making the addition of Ca2+ ions into naphthalene solution for its rapid adsorption was elucidated which is leaded by a probable increase in sorption capacity for naphthalene molecules at lower concentrations. The stable nature of crystallinity of calcium oxide and a less degree of naphthalene molecules leaching during consecutive cycles of adsorptive process and nanoparticle regeneration was also scrutinized.
Collapse
Affiliation(s)
- J Aravind Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India.
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - G Narendrakumar
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - P Prakash
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - K Balasankar
- Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - D Purna Pushkala
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O 2455, Riyadh, 11451, Saudi Arabia
| | - A G Ramu
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong-ro, Jochiwon-eup, Sejong city, 30016, Republic of Korea
| | - Dongjin Choi
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong-ro, Jochiwon-eup, Sejong city, 30016, Republic of Korea
| |
Collapse
|
8
|
Benabbas K, Zabat N, Hocini I. Facile synthesis of Fe 3O 4/CuO a core-shell heterostructure for the enhancement of photocatalytic activity under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4329-4341. [PMID: 32944857 DOI: 10.1007/s11356-020-10749-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
A magnetically separable Fe3O4/CuO core-shell heterostructure photocatalyst was synthesized by hydrothermal method. The obtained photocatalyst was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and UV-visible diffuse reflectance (UV-DRS). The obtained photocatalyst was used for the degradation of azo dye Direct Red 89 (DR89), under visible light irradiation provided by fluorescent lamp of 100 W in the presence of 7 mL of H2O2 (30%); the results of the photocatalytic activity for Fe3O4/CuO photocatalyst showed that in the presence of 0.75 g dispersed in 250 mL of 40 mg/L of DR89 dye at pH 6 the dye was completely removed after 240 min. Moreover, the photocatalytic activity of the prepared Fe3O4/CuO was enhanced 11 and 9 times compared with the pure Fe3O4 or CuO. The effect of initial dye concentrations on the photocatalytic activity was studied in the range of 20-60 mg/L, and the results showed that the catalyst has a good photocatalytic activity of 89% even at high concentration (60 mg/L). Furthermore, the catalyst maintained its activity after 5 cycles, and its paramagnetic property facilitates its recovery. The excellent photodegradation activity of Fe3O4/CuO was attributed to the low band gap of the catalyst equal to 1.54 eV and the enhancement of light absorption in visible range of 330-780 nm, but also to a better charge carriers separation, due to the presence of Fe3O4 that reduces electron/hole recombination.
Collapse
Affiliation(s)
- Khaled Benabbas
- Laboratory of Organic Synthesis-Modeling and Optimization of Chemical Processes, Badji Mokhtar University, P.O. Box 12, 23000, Annaba, Algeria.
| | - Nassira Zabat
- Laboratory of Organic Synthesis-Modeling and Optimization of Chemical Processes, Badji Mokhtar University, P.O. Box 12, 23000, Annaba, Algeria
| | - Imene Hocini
- Laboratory of Organic Synthesis-Modeling and Optimization of Chemical Processes, Badji Mokhtar University, P.O. Box 12, 23000, Annaba, Algeria
| |
Collapse
|
9
|
Nguyen VH, Phan Thi LA, Van Le Q, Singh P, Raizada P, Kajitvichyanukul P. Tailored photocatalysts and revealed reaction pathways for photodegradation of polycyclic aromatic hydrocarbons (PAHs) in water, soil and other sources. CHEMOSPHERE 2020; 260:127529. [PMID: 32683023 DOI: 10.1016/j.chemosphere.2020.127529] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/24/2020] [Indexed: 05/23/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), which are in the class of persistent organic pollutants, are considered as hazardous pollutants. To date, these compounds were detected globally in soil, sludge, water, and other contamination sources. A variety of treatment methods have been used in recent years to degrade PAHs in the environment. Photocatalysis, among advanced techniques, is proposed as the most effective method for the treatment of PAHs. In this context, we introduce the classification of PAHs, summarize, and highlight the recent studies on photodegradation of various types of PAHs. A series of efficient photocatalysts, including TiO2-, Ag3PO4-, ZnO-, MHCFs-based, and others, have been reported with the potential result for photodegradation of PAHs. Focus is also placed on revealing several possible reaction pathways for different types of PAHs that have been proposed in the literature. Particular attention to current status, challenges, and prospects in the future for enhanced photodegradation of PAHs are also discussed.
Collapse
Affiliation(s)
- Van-Huy Nguyen
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Lan-Anh Phan Thi
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam; Center for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Vietnam
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Pardeep Singh
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand.
| |
Collapse
|
10
|
Facile Synthesis of Anatase–Rutile Diphase N-doped TiO2 Nanoparticles with Excellent Visible Light Photocatalytic Activity. Catalysts 2020. [DOI: 10.3390/catal10101126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To further boost the charge separation and photocatalytic activity of TiO2 under visible light, the anatase–rutile mixed-phase nitrogen-doped (N-doped) TiO2 nanoparticles were successfully synthesized through a facile one-step calcining procedure using TiN as raw materials. The crystal phases, morphologies, chemical compositions, textural structures, and optical properties of as-obtained N-doped TiO2 were characterized by the corresponding analytical techniques. The photocatalytic activities of as-fabricated samples were evaluated by degrading 4-chlorophenol (4-CP) and methylene blue (MB) aqueous solution under visible light irradiation. The results revealed that the ratio of rutile to anatase increased with the improvement of sintering temperature, and the sample prepared at 500 °C had the best photocatalytic activity. This might be because it possessed the most appropriate rutile/anatase proportion as well as the nitrogen doping. The transient photocurrent responses, photoluminescence spectra (PL) measurements, and active species trapping experiments were implemented to disclose the photocatalytic mechanism. This work will provide a further insight into the synthesis of highly efficient N-doped TiO2 photocatalysts for organic contaminant removal.
Collapse
|