1
|
Gonçalves NPF, Almeida MM, Labrincha JA, Novais RM. Effective acid mine drainage remediation in fixed bed column using porous red mud/fly ash-containing geopolymer spheres. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173633. [PMID: 38823716 DOI: 10.1016/j.scitotenv.2024.173633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Acid mine drainage (AMD) poses a significant threat to water quality worldwide, being amongst the most problematic environmental concerns of the millennium. This work reports for the first time the remediation of real AMD, from a Portuguese abandoned mine, in fixed bed column using porous red mud/fly ash-based geopolymeric spheres. Porous waste-based spheres (2.6 ± 0.2 mm) were obtained by a suspension-solidification method through the addition of optimum foaming agent dosage. The sorbent capacity in removing cations from AMD was evaluated by targeting selected hazardous elements: Zn, Cu, Co, Pb and Ni, based on their occurrence in the effluent and potential hazard. The spheres exhibited a dual mechanism of action, simultaneously neutralizing the acidic sample while removing cations through adsorption achieving removal efficiencies between 51 % and 80 %. Other elements present in high levels, such as iron were efficiently removed (>96 %). The role of precipitation, due to the pH neutralization, and adsorption was determined. The sorbent regeneration and reusability were evaluated for up to five cycles. Moreover, the effectiveness of waste-based geopolymers treating distinct AMD waters due to seasonal variations was also evaluated, further demonstrating the effectiveness of the proposed strategy to address environmental concerns stemming from mining activities.
Collapse
Affiliation(s)
- Nuno P F Gonçalves
- Dept. of Chemistry/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana M Almeida
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João A Labrincha
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui M Novais
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Wang Z, Tian H, Liu J, Wang J, Lu Q, Xie L. Cd(II) adsorption on earth-abundant serpentine in aqueous environment: Role of interfacial ion specificity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121845. [PMID: 37209895 DOI: 10.1016/j.envpol.2023.121845] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Adsorption of heavy metal ions (e.g., Cd(II)) on clay minerals significantly affects their transport and fate in natural and engineered waterbodies. To date, the role of interfacial ion specificity in the adsorption of Cd(II) on earth-abundant serpentine remains elusive. In this work, the adsorption of Cd(II) on serpentine at typical environment conditions (pH 4.5-5.0), particularly under the complex influence of common environmental anions (e.g., NO3-, SO42-) and cations (e.g., K+, Ca2+, Fe3+, Al3+) was systemically investigated. It was found that the adsorption of Cd(II) on serpentine surface due to the inner-sphere complexation could be negligibly affected by the anion type, yet the cations specifically modulated the Cd(II) adsorption. The presence of mono- and divalent cations moderately enhanced the Cd(II) adsorption by weakening the electrostatic double layer (EDL) repulsion between Cd(II) and Mg-O plane of serpentine, while trivalent cations significantly suppressed the adsorption of Cd(II) due to the competitive adsorption. Based on the spectroscopy analysis, Fe3+ and Al3+ were found to robustly bind the surface active sites of serpentine, thereby preventing the inner-sphere adsorption of Cd(II). The density functional theory (DFT) calculation indicated that Fe(III) and Al(III) exhibited the larger adsorption energy (Ead = -146.1 and -516.1 kcal mol-1, respectively) and stronger electron transfer capacity with serpentine compared to Cd(II) (Ead = -118.1 kcal mol-1), thus resulting in the formation of more stable Fe(III)-O and Al(III)-O inner-sphere complexes. This study provides valuable insights into the influence of interfacial ion specificity on the Cd(II) adsorption in terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Zhoujie Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, PR China
| | - Huadong Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, PR China
| | - Jing Liu
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing, 100191, PR China
| | - Jingyi Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, Canada
| | - Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
3
|
Lan T, Li P, Li X, Guo J, Huang Q, Geng J, Zhao Q, Yang W, Guo S. Influence of modulus of alkaline activator on the removal of Pb 2+ by mesoporous geopolymer adsorbent. ENVIRONMENTAL TECHNOLOGY 2022; 43:4269-4278. [PMID: 34152255 DOI: 10.1080/09593330.2021.1946597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, we synthesised metakaolin-based mesoporous geopolymer adsorbent and investigated the effect of alkaline activator modulus (molar ratios of SiO2/Na2O) on Pb2+ adsorption. The geopolymer prepared using 1.2 M alkaline activator performs excellent Pb2+ removal with a maximum adsorption capacity of 172.71 mg g-1. The pseudo-second-order model fit the adsorption kinetics satisfactorily, indicating that the adsorption process is dominated by chemical adsorption. The adsorption data appropriately fit the Langmuir isotherm model. The contributions of adsorption methods corresponding to the total quantity adsorbed declined in the following order: EDTA extraction (formation of Pb aluminium oxide and Pb-containing amorphous materials) > residual fraction (Pb stabilisation in the tetrahedral aluminosilicate network) > ion exchange. Overall, the alkaline activator modulus significantly influenced the Pb2+ adsorption characteristics of the geopolymer adsorbent.
Collapse
Affiliation(s)
- Tian Lan
- College of Land Science and Technology, China Agricultural University, Beijing, People's Republic of China
- School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Pinfang Li
- College of Land Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Xiangling Li
- College of Land Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Jingting Guo
- Beijing Environmental Engineering Technology Co., Ltd, Beijing, People's Republic of China
| | - Qian Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
- Zhejiang Allianz Testing Technology Service Co., Ltd, Hangzhou People's Republic of China
| | - JianJian Geng
- Yunnan Institute of Tropical Crops, Jinghong, Yunnan, People's Republic of China
| | - Qingjie Zhao
- College of Forestry, Hainan University, Haikou, People's Republic of China
| | - Wei Yang
- College of Land Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Shiwen Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Xu J, Li M, Zhao D, Zhong G, Sun Y, Hu X, Sun J, Li X, Zhu W, Li M, Zhang Z, Zhang Y, Zhao L, Zheng C, Sun X. Research and Application Progress of Geopolymers in Adsorption: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3002. [PMID: 36080037 PMCID: PMC9457617 DOI: 10.3390/nano12173002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Geopolymer is a porous inorganic material with a three-dimensional mesh structure, good mechanical properties, a simple preparation process (no sintering) and a low economic cost, and it is environmentally friendly. Geopolymer concrete has been widely used in the construction field, and many other studies have revealed that geopolymer will become one of the most promising inorganic materials with unique structure and properties. This paper provides a review of the development and current status of geopolymers and briefly explains the effects of material proportioning, experimental factors and activators on geopolymer performance. Because of the advantages of high specific surface area and high porosity, geopolymers could be used as adsorbent materials. This paper summarizes the research progresses of the adsorption of metal cations, anions, dyes, and gases by geopolymers, which emphasizes the geopolymer membranes in adsorption, and discusses the challenges and opportunities for the development of more efficient, sustainable and practical adsorption protocols.
Collapse
Affiliation(s)
- Jinyun Xu
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Minjing Li
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Di Zhao
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Guoqiang Zhong
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Yu Sun
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Xudong Hu
- Key Laboratory of Advanced Ceramics and Machining Technology of the Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiefang Sun
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xiaoyun Li
- Advanced Materials Research Laboratory, CNOOC Tianjin Chemical Research and Design Institute, Tianjin 300131, China
| | - Wenju Zhu
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Ming Li
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Ziqi Zhang
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Yu Zhang
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Liping Zhao
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Chunming Zheng
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, State Key Laboratory of Separation Membrane and Membrane Processes, School of Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaohong Sun
- Key Laboratory of Advanced Ceramics and Machining Technology of the Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Unravelling the Affinity of Alkali-Activated Fly Ash Cubic Foams towards Heavy Metals Sorption. MATERIALS 2022; 15:ma15041453. [PMID: 35207992 PMCID: PMC8877568 DOI: 10.3390/ma15041453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022]
Abstract
In this work, alkali-activated fly ash-derived foams were produced at room temperature by direct foaming using aluminum powder. The 1 cm3 foams (cubes) were then evaluated as adsorbents to extract heavy metals from aqueous solutions. The foams' selectivity towards lead, cadmium, zinc, and copper ions was evaluated in single, binary, and multicomponent ionic solutions. In the single ion assays, the foams showed much higher affinity towards lead, compared to the other heavy metals; at 10 ppm, the removal efficiency reached 91.9% for lead, 83.2% for cadmium, 74.6% for copper, and 64.6% for zinc. The greater selectivity for lead was also seen in the binary tests. The results showed that the presence of zinc is detrimental to cadmium and copper sorption, while for lead it mainly affects the sorption rate, but not the ultimate removal efficiency. In the multicomponent assays, the removal efficiency for all the heavy metals was lower than the values seen in the single ion tests. However, the superior affinity for lead was preserved. This study decreases the existing knowledge gap regarding the potential of alkali-activated materials to act as heavy metals adsorbents under different scenarios.
Collapse
|
6
|
Tunali Akar S, Koc E, Sayin F, Kara I, Akar T. Design and modeling of the decolorization characteristics of a regenerable and eco-friendly geopolymer: Batch and dynamic flow mode treatment aspects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113548. [PMID: 34426225 DOI: 10.1016/j.jenvman.2021.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
One of the most important environmental and health issues today is the elimination of the dye pollution from the contaminated water ecosystem. The use of geopolymers to eliminate such contaminants has recently emerged as a promising alternative. In this study, metakaolin based geopolymer (MKBG) was synthesized to be a promising adsorbent for Basic Blue 7 (BB7). To optimize the input parameters (solution pH, MKBG dose, mixing time, temperature, mixing speed, column diameter, and flow rate) towards BB7 removal by MKBG, a Box-Behnken design (BBD) was employed to develop the response model, followed by numerical optimization. The quadratic models correlating the adsorption variables to BB7 adsorption yield as responses were developed for batch and dynamic flow systems. The pseudo-second-order model accurately predicted the BB7 adsorption kinetics on MKBG. Decolorization yields of BB7 in batch and continuous systems reached 96 % and 56 %, respectively. The Langmuir model accurately described equilibrium data, thereby justifying monolayer and homogeneous adsorption. The MKBG demonstrated significant reusability up to 20 dynamic flow adsorption cycles. IR, SEM, and zeta potential measurements were used to describe the sorbent structure, and the mechanism of MKBG-BB7 interaction was assessed. Overall, MKBG offers a good application potential for the treatment of basic dye contaminated waters.
Collapse
Affiliation(s)
- Sibel Tunali Akar
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR, 26040, Eskisehir, Turkey.
| | - Evrim Koc
- Eskisehir Osmangazi University, Graduate School of Natural and Applied Sciences, Department of Chemistry, TR, 26040, Eskisehir, Turkey
| | - Fatih Sayin
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR, 26040, Eskisehir, Turkey
| | - Ilknur Kara
- Department of Elementary Education, Faculty of Education, Anadolu University, 26470, Eskisehir, Turkey
| | - Tamer Akar
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR, 26040, Eskisehir, Turkey
| |
Collapse
|
7
|
Kang C, Li Q, Yi H, Deng H, Mo W, Meng M, Huang S. EDTAD-modified cassava stalks loaded with Fe 3O 4: highly efficient removal of Pb 2+ and Zn 2+ from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6733-6745. [PMID: 33006734 DOI: 10.1007/s11356-020-10858-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel magnetic cassava stalk composite (M-EMCS) was prepared through modification with ethylenediamine tetraacetic anhydride (EDTAD) and loading of Fe3O4. The surface morphology, molecular structure, and magnetic characteristics of the composite were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), vibrating-sample magnetometer (VSM), and X-ray diffraction (XRD). It was shown that EDTAD and Fe3O4 were successfully modified and loaded in cassava straw (CS), respectively. The capacity of M-EMCS to absorb heavy metals under different influencing factors was tested by atomic absorption spectroscopy. The adsorption processes of both Pb2+ and Zn2+ were suitably described by second-order kinetic models and Langmuir models, indicating monolayer chemisorption. M-EMCS had high adsorption rates and adsorption capacities for these two metal ions. The adsorption of Pb2+ and Zn2+ reached a plateau after 10 min, and the adsorption capacity of Pb2+ (163.93 mg/g) was higher than that of Zn2+ (84.74 mg/g). Thermodynamic analysis showed that the adsorption of two metals by M-EMCS was spontaneous, endothermic, and irreversible. XPS analysis showed that M-EMCS mainly removes Pb2+ and Zn2+ through ion exchange, chelation, and redox. Graphical abstract.
Collapse
Affiliation(s)
- Caiyan Kang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China.
- Department of Education, Key Laboratory of Karst Ecology and Environment Change of Guangxi, Guangxi Normal University, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China.
| | - Qiuyan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| | - Hui Yi
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| | - Hua Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China.
- Department of Education, Key Laboratory of Karst Ecology and Environment Change of Guangxi, Guangxi Normal University, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China.
| | - Weiming Mo
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Mianwu Meng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China
- Department of Education, Key Laboratory of Karst Ecology and Environment Change of Guangxi, Guangxi Normal University, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| | - Siyu Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China
- Department of Education, Key Laboratory of Karst Ecology and Environment Change of Guangxi, Guangxi Normal University, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
8
|
Deng H, Li Q, Huang M, Li A, Zhang J, Li Y, Li S, Kang C, Mo W. Removal of Zn(II), Mn(II) and Cu(II) by adsorption onto banana stalk biochar: adsorption process and mechanisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2962-2974. [PMID: 33341785 DOI: 10.2166/wst.2020.543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low-cost banana stalk (Musa nana Lour.) biochar was prepared using oxygen-limited pyrolysis (at 500 °C and used), to remove heavy metal ions (including Zn(II), Mn(II) and Cu(II)) from aqueous solution. Adsorption experiments showed that the initial solution pH affected the ability of the biochar to adsorb heavy metal ions in single- and polymetal systems. Compared to Mn(II) and Zn(II), the biochar exhibited highly selective Cu(II) adsorption. The adsorption kinetics of all three metal ions followed the pseudo-second-order kinetic equation. The isotherm data demonstrated the Langmuir model fit for Zn(II), Mn(II) and Cu(II). The results showed that the chemical adsorption of single molecules was the main heavy metal removal mechanism. The maximum adsorption capacities (mg·g-1) were ranked as Cu(II) (134.88) > Mn(II) (109.10) > Zn(II) (108.10)) by the single-metal adsorption isotherms at 298 K. Moreover, characterization analysis was performed using Fourier transform infrared spectroscopy, the Brunauer-Emmett-Teller method, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results revealed that ion exchange was likely crucial in Mn(II) and Zn(II) removal, while C-O, O-H and C = O possibly were key to Cu(II) removal by complexing or other reactions.
Collapse
Affiliation(s)
- Hua Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Qiuyan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Meijia Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Anyu Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail:
| | - Junyu Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Yafen Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Shuangli Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Caiyan Kang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China and College of Environment and Resources, Guangxi Normal University, Guilin 541004, China E-mail: ; Key Laboratory of Karst Ecology and Environmental Change, Guangxi Department of Education, Guilin 541004, China
| | - Weiming Mo
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
9
|
A Mineral By-Product from Gasification of Poultry Feathers for Removing Cd from Highly Contaminated Synthetic Wastewater. MINERALS 2020. [DOI: 10.3390/min10121048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ash from poultry feather gasification was investigated as an adsorbent for Cd removal from synthetic wastewater under a range of operational conditions: initial pH (2–8) and salinity (8–38 mS/cm) of wastewater, ash dosage (2.5–50 g/L), Cd concentration (25–800 mg/L) and contact time (5–720 min). The ash was highly alkaline and had low surface area and micropores averaging 1.12 nm in diameter. Chemical/mineralogical analysis revealed a high content of P2O5 (39.9 wt %) and CaO (35.5 wt %), and the presence of calcium phosphate, hydroxyapatite and calcium. It contained only trace amounts of heavy metals, BTEX, PAHs and PCBs, making it a safe mineral by-product. Cd adsorption was described best with Langmuir and pseudo-second order models. At pH 5, an ash dosage of 5 g/L, 40 min contact time and 100 mg Cd/L, 99% of Cd was removed from wastewater. The salinity did not affect Cd sorption. The maximum adsorption capacity of Cd was very high (126.6 mg/g). Surface precipitation was the main mechanism of Cd removal, possibly accompanied by ion exchange between Cd and Ca, coprecipitation of Cd with Ca-mineral components and Cd complexation with phosphate surface sites. Poultry ash effectively removes high concentrations of toxic Cd from wastewater.
Collapse
|
10
|
Novais RM, Carvalheiras J, Seabra MP, Pullar RC, Labrincha JA. Highly efficient lead extraction from aqueous solutions using inorganic polymer foams derived from biomass fly ash and metakaolin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111049. [PMID: 32669253 DOI: 10.1016/j.jenvman.2020.111049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
This work reports a simple and safe, but powerful, route to depollute lead-containing aqueous solutions. Inorganic polymer foams (cm-size) were used as bulk-type adsorbents. The influence of the specimens' porosity and activator molarity on the foams' physical properties and on their lead extraction ability was studied. Then, the best performing samples were deeply evaluated as lead adsorbents by studying the impact of pH, lead concentration, contact time, ionic strength and solution volume. Lead sorption kinetics is strongly affected by the pollutant concentration, pH and the solution ionic strength. Under the most favourable conditions the foams showed an impressive removal capacity (105.9 mg/g at pH 5, 23 °C, C0 = 800 ppm, deionised water), surpassing all other reported values on the use of bulk-type inorganic polymers. The foams' lead uptake is 2.3 times higher than the previous best performing bulk-type specimens (mm-size spheres), and sorption is 12.5-15 times faster. The foams can be easily regenerated using mild acidic conditions, and then reused as adsorbent, suggesting that the main adsorption mechanism is ion exchange.
Collapse
Affiliation(s)
- Rui M Novais
- Department of Materials and Ceramic Engineering / CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João Carvalheiras
- Department of Materials and Ceramic Engineering / CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Maria P Seabra
- Department of Materials and Ceramic Engineering / CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Robert C Pullar
- Department of Materials and Ceramic Engineering / CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João A Labrincha
- Department of Materials and Ceramic Engineering / CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
11
|
Taha MH, Masoud AM, Khawassek YM, Hussein AEM, Aly HF, Guibal E. Cadmium and iron removal from phosphoric acid using commercial resins for purification purpose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31278-31288. [PMID: 32488709 DOI: 10.1007/s11356-020-09342-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Three commercial resins bearing sulfonic, amino phosphonic, or phosphonic/sulfonic reactive groups have been tested for the removal of iron and cadmium from phosphoric acid solutions. The sorption properties are compared for different experimental conditions such as sorbent dosage (0.5-2.5 g L-1), phosphoric acid concentration (from bi-component solutions, 0.25-2 M), and metal concentrations (i.e., in the range 0.27-2.7 mmol Cd L-1 and 0.54 mmol Fe L-1) with a special attention paid to the impact of the type of reactive groups held on the resins. The sulfonic-based resin (MTC1600H) is more selective for Cd (against Fe), especially at high phosphoric acid concentration and low sorbent dosage, while MTS9500 (aminophosphonic resin) is more selective for Fe removal (regardless of acid concentration and sorbent dosage). Equilibrium is reached within 2-4 h. The resins can be ranked in terms of cumulative sorption capacities according the series: MTC1600H > MTS9570 > MTS 9500. Sulfuric acid (0.5-1 M) can be efficiently used for the desorption of both iron and cadmium for MTC1600H, while for MTS9570 (phosphonic/sulfonic resin) sulfuric acid correctly desorbs Cd (above 96% at 1 M concentration), contrary to Fe (less than 30%). The aminophosphonic resin shows much poorer efficiency in terms of desorption. The sulfonic resin (i.e., MTC1600H) shows much higher sorption capacity, better selectivity, comparable uptake kinetics (about 2 h equilibrium time), and better metal desorption ability (higher than 98% with 1 M acid concentration, regardless of the type of acid). This conclusion is confirmed by the comparison of removal properties in the treatment of different types of industrial phosphoric acid solutions (crude, and pre-treated H3PO4 solutions). The three resins are inefficient for the treatment of crude phosphoric acid, and activated charcoal pre-treatment (MTC1600H reduced cadmium content by 77%). However, MTC1600H allows removing over 93% of Fe and Cd for H3PO4 pre-treated by TBP solvent extraction, while the others show much lower efficiencies (< 53%).
Collapse
Affiliation(s)
- Mohamed H Taha
- Nuclear Materials Authority, P.O. Box 530, El Maddi, Cairo, Egypt
| | - Ahmed M Masoud
- Nuclear Materials Authority, P.O. Box 530, El Maddi, Cairo, Egypt
| | | | | | - Hisham F Aly
- Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Eric Guibal
- Polymers Composites and Hybrids (PCH), IMT Mines Ales, 6 avenue de Clavières, 30319, Alès cedex, France.
| |
Collapse
|
12
|
Panda L, Jena SK, Rath SS, Misra PK. Heavy metal removal from water by adsorption using a low-cost geopolymer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24284-24298. [PMID: 32306254 DOI: 10.1007/s11356-020-08482-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
In the present study, a geopolymer from dolochar ash was synthesized and used for the removal of heavy metal ions such as Co(II), Ni(II), Cd(II), and Pb(II) from the aqueous solution through the adsorption process. The geopolymer was characterized by a series of analytical techniques. The XRD pattern revealed the loss of dolochar ash crystallinity on geoploymerization. The peak at 982 cm-1 observed in the FTIR spectrum due to Si-O-Si and Si-O-Al bonds confirmed the formation of geopolymer. BET surface area analyses indicated the mesoporous nature of the sample. The adsorption experiments revealed the higher removal efficiency of the geopolymer in comparison with the feed dolochar ash. The effects of different experimental factors such as pH, temperature, reaction time, and initial concentration of metal ions on metal uptake efficiency were evaluated to optimize the removal efficiency. The maximum removal of 98-99% was achieved when the pH, temperature, and initial metal ion concentration were 7.8, 343 K, and 10 ppm, respectively. The adsorption process followed the pseudo-second-order rate equation and validated the Langmuir adsorption model. Thermodynamic parameters such as ΔH, ΔS, and ΔG confirmed that the process to be spontaneous and endothermic. This geopolymer was found to compete efficiently with many adsorbents reported in the literature for water treatment.
Collapse
Affiliation(s)
- Laxmipriya Panda
- Centre of Studies in Surface Science and Technology, School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| | - Sandeep K Jena
- Centre of Studies in Surface Science and Technology, School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
| | - Swagat S Rath
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
| | - Pramila K Misra
- Centre of Studies in Surface Science and Technology, School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India.
| |
Collapse
|