1
|
Gregorczyk-Maga I, Szustkiewicz-Karoń A, Gajda M, Kapusta M, Maga W, Schönborn M. The Concentration of Pro- and Antiangiogenic Factors in Saliva and Gingival Crevicular Fluid Compared to Plasma in Patients with Peripheral Artery Disease and Type 2 Diabetes. Biomedicines 2023; 11:1596. [PMID: 37371691 DOI: 10.3390/biomedicines11061596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have investigated various biomarkers in relation to peripheral artery disease (PAD) for disease stratification and early-onset detection. In PAD, angiogenesis is required for tissue restoration and tissue perfusion. Considering changes in angiogenesis in patients with PAD, angiogenic factors could be explored as one of the new prognostic molecules. In recent studies, saliva and gingival crevicular fluid (GCF) have gained recognition as new, easily obtained diagnostic materials. This study aimed to compare the levels of selected circulating angiogenic factors (VEGF-A, PDGF-BB, and ANG-1) in unstimulated whole saliva (WS) and GCF versus plasma at three points in time to find possible correlations between their concentrations among patients with PAD and diabetes type 2 in 32 patients with Rutherford stages 5 and 6. A significant positive correlation has been demonstrated between circulating PDGF-BB levels in GCF and plasma. In most cases, comorbidities do not have an impact on the change in general correlation for the whole group. Our results clearly showed that GCF could be a good source for PDGF assessment. However, future studies with a larger number of subjects are warranted to confirm this finding and identify the most accurate angiogenic biomarkers in saliva or GCF that could be applied in clinical practice.
Collapse
Affiliation(s)
- Iwona Gregorczyk-Maga
- Faculty of Medicine, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland
| | | | - Mateusz Gajda
- Department of Angiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland
- Doctoral School of Medicine and Health Sciences, Jagiellonian University Medical College, 31-121 Krakow, Poland
| | - Maria Kapusta
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Wojciech Maga
- Faculty of Medicine, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland
| | - Martyna Schönborn
- Department of Angiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland
- Doctoral School of Medicine and Health Sciences, Jagiellonian University Medical College, 31-121 Krakow, Poland
| |
Collapse
|
2
|
Yang DL, Zhang ZN, Liu H, Yang ZY, Liu MM, Zheng QX, Chen W, Xiang P. Indoor air pollution and human ocular diseases: Associated contaminants and underlying pathological mechanisms. CHEMOSPHERE 2023; 311:137037. [PMID: 36349586 DOI: 10.1016/j.chemosphere.2022.137037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/01/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
People spend a long time indoors, especially young children. The risk of indoor pollution on human health is one of the current hotspots in environmental and public health. The human ocular surface is highly susceptible to indoor environment quality. Epidemiological data have linked human ophthalmological disorders with exposure to indoor pollution. In this review, we summarized the adverse impacts of indoor pollution on the human ocular surface. Several studies demonstrated that indoor contaminants including particulate matter, volatile/semi-volatile organic compounds, heavy metals, and fuel combustion and cigarette smoke exposure were associated with the incidence of human dry eye, conjunctivitis, glaucoma, cataracts, age-related macular degeneration, and keratitis. In addition, toxicological investigations revealed that indoor pollution-induced induced chronic inflammation, oxidative damage, and disruption of tight junctions are the main underlying pathological mechanisms for ocular surface diseases. Taken together, this review may expand the understanding of pollution-induced eye disorder and highlight the importance of reducing associated contaminants to decrease their detrimental effects on human eyes.
Collapse
Affiliation(s)
- Dan-Lei Yang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Zhen-Ning Zhang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Hai Liu
- The Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming, 650224, China
| | - Zi-Yue Yang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Mi-Mi Liu
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315040, China
| | - Qin-Xiang Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315040, China
| | - Wei Chen
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315040, China.
| | - Ping Xiang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
3
|
Rodrigues VST, Moura EG, Peixoto TC, Soares PN, Lopes BP, Oliveira E, Manhães AC, Atella GC, Kluck GEG, Cabral SS, Trindade PL, Daleprane JB, Lisboa PC. Changes in gut-brain axis parameters in adult rats of both sexes with different feeding pattern that were early nicotine-exposed. Food Chem Toxicol 2021; 158:112656. [PMID: 34740714 DOI: 10.1016/j.fct.2021.112656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023]
Abstract
Nicotine is an endocrine disruptor and imprinting factor during breastfeeding that can cause food intake imbalance in the adulthood. As nicotine affects the intestinal microbiota, altering the composition of the bacterial communities and short-chain fatty acids (SCFAs) synthesis in a sex-dependent manner, we hypothesized that nicotine could program the gut-brain axis, consequently modifying the eating pattern of adult male and female rats in a model of maternal nicotine exposure (MNE) during breastfeeding. Lactating Wistar rat dams received minipumps that release 6 mg/kg/day of nicotine (MNE group) or saline for 14 days. The progeny received standard diet from weaning until euthanasia (26 weeks of age). We measured: in vivo electrical activity of the vagus nerve; c-Fos expression in the nucleus tractus solitarius, gastrointestinal peptides receptors, intestinal brain-derived neurotrophic factor (BDNF), SCFAs and microbiota. MNE females showed hyperphagia despite normal adiposity, while MNE males had unchanged food intake, despite obesity. Adult MNE offspring showed decreased Bacteroidetes and increased Firmicutes, Actinobacteria and Proteobacteria. MNE females had lower fecal acetate while MNE males showed higher vagus nerve activity. In summary nicotine exposure through the milk induces long-term intestinal dysbiosis, which may affect eating patterns of adult offspring in a sex-dependent manner.
Collapse
Affiliation(s)
- V S T Rodrigues
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - E G Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - T C Peixoto
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - P N Soares
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - B P Lopes
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - E Oliveira
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - A C Manhães
- Neurophysiology Laboratory, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - G C Atella
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - G E G Kluck
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - S S Cabral
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - P L Trindade
- Laboratory for Studies of Interactions Between Nutrition and Genetics, Nutrition Institute, Rio de Janeiro State University, RJ, Brazil
| | - J B Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, Nutrition Institute, Rio de Janeiro State University, RJ, Brazil
| | - P C Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Fu X, Zong T, Yang P, Li L, Wang S, Wang Z, Li M, Li X, Zou Y, Zhang Y, Htet Aung LH, Yang Y, Yu T. Nicotine: Regulatory roles and mechanisms in atherosclerosis progression. Food Chem Toxicol 2021; 151:112154. [PMID: 33774093 DOI: 10.1016/j.fct.2021.112154] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Smoking is an independent risk factor for atherosclerosis. The smoke produced by tobacco burning contains more than 7000 chemicals, among which nicotine is closely related to the occurrence and development of atherosclerosis. Nicotine, a selective cholinergic agonist, accelerates the formation of atherosclerosis by stimulating nicotinic acetylcholine receptors (nAChRs) located in neuronal and non-neuronal tissues. This review introduces the pathogenesis of atherosclerosis and the mechanisms involving nicotine and its receptors. Herein, we focus on the various roles of nicotine in atherosclerosis, such as upregulation of growth factors, inflammation, and the dysfunction of endothelial cells, vascular smooth muscle cells (VSMC) as well as macrophages. In addition, nicotine can stimulate the generation of reactive oxygen species, cause abnormal lipid metabolism, and activate immune cells leading to the onset and progression of atherosclerosis. Exosomes, are currently a research hotspot, due to their important connections with macrophages and the VSMC, and may represent a novel application into future preventive treatment to promote the prevention of smoking-related atherosclerosis. In this review, we will elaborate on the regulatory mechanism of nicotine on atherosclerosis, as well as the effects of interference with nicotine receptors and the use of exosomes to prevent atherosclerosis development.
Collapse
Affiliation(s)
- Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lin Li
- Department of Vascular Surgery, The Qingdao Hiser Medical Center, Qingdao, Shandong Province, China
| | - Shizhong Wang
- The Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 66000, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, People's Republic of China.
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| |
Collapse
|