1
|
Long S, Hamilton PB, Wang C, Li C, Xue X, Zhao Z, Wu P, Gu E, Uddin MM, Li B, Xu F. Bioadsorption, bioaccumulation and biodegradation of antibiotics by algae and their association with algal physiological state and antibiotic physicochemical properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133787. [PMID: 38364579 DOI: 10.1016/j.jhazmat.2024.133787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Bioadsorption, bioaccumulation and biodegradation processes in algae, play an important role in the biomagnification of antibiotics, or other organic pollutants, in aquatic food chains. In this study, the bioadsorption, bioaccumulation and biodegradation of norfloxacin [NFX], sulfamethazine [SMZ] and roxithromycin [RTM]) is investigated using a series of culture experiments. Chlorella vulgaris was exposed to these antibiotics with incubation periods of 24, 72, 120 and 168 h. Results show the bioadsorption concentration of antibiotics in extracellular matter increases with increasing alkaline phosphatase activity (AKP/ALP). The bioaccumulation concentrations of NFX, SMZ and RTM within cells significantly increase after early exposure, and subsequently decrease. There is a significant positive antibiotics correlation to superoxide dismutase (SOD), the photosynthetic electron transport rate (ETR) and maximum fluorescence after dark adaptation (Fv/Fm), while showing a negative correlation to malondialdehyde (MDA). The biodegradation percentages (Pb) of NFX, SMZ and RTM range from 39.3 - 97.2, 41.3 - 90.5, and 9.3 - 99.9, respectively, and significantly increase with increasing Fv/Fm, density and chlorophyll-a. The accumulation of antibiotics in extracellular and intracellular substances of C. vulgaris is affected by antibiotic biodegradation processes associated with cell physiological state. The results succinctly explain relationships between algal growth during antibiotics exposure and the bioadsorption and bioaccumulation of these antibiotics in cell walls and cell matter. The findings draw an insightful understanding of the accumulation of antibiotics in algae and provide a scientific basis for the better utilization of algae treatment technology in antibiotic contaminated wastewaters. Under low dose exposures, the biomagnification of antibiotics in algae is affected by bioadsorption, bioaccumulation and biodegradation.
Collapse
Affiliation(s)
- Shengxing Long
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Paul B Hamilton
- Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada
| | - Chaonan Wang
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Cunlu Li
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Xingyan Xue
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Zhiwei Zhao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Peizhao Wu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Erxue Gu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Mohammad M Uddin
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Bengang Li
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China
| | - Fuliu Xu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Fayaz T, Renuka N, Ratha SK. Antibiotic occurrence, environmental risks, and their removal from aquatic environments using microalgae: Advances and future perspectives. CHEMOSPHERE 2024; 349:140822. [PMID: 38042426 DOI: 10.1016/j.chemosphere.2023.140822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/14/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Antibiotic pollution has caused a continuous increase in the development of antibiotic-resistant bacteria and antibiotic-resistant genes (ARGs) in aquatic environments worldwide. Algae-based bioremediation technology is a promising eco-friendly means to remove antibiotics and highly resistant ARGs, and the generated biomass can be utilized to produce value-added products of industrial significance. This review discussed the prevalence of antibiotics and ARGs in aquatic environments and their environmental risks to non-target organisms. The potential of various microalgal species for antibiotic and ARG removal, their mechanisms, strategies for enhanced removal, and future directions were reviewed. Antibiotics can be degraded into non-toxic compounds in microalgal cells through the action of extracellular polymeric substances, glutathione-S-transferase, and cytochrome P450; however, antibiotic stress can alter microalgal gene expression and growth. This review also deciphered the effect of antibiotic stress on microalgal physiology, biomass production, and biochemical composition that can impact their commercial applications.
Collapse
Affiliation(s)
- Tufail Fayaz
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India.
| | - Sachitra Kumar Ratha
- Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| |
Collapse
|
3
|
de Jesus Oliveira Santos M, de Oliveira Souza C, Marcelino HR. Blue technology for a sustainable pharmaceutical industry: Microalgae for bioremediation and pharmaceutical production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Geng W, Xiao X, Zhang L, Ni W, Li N, Li Y. Response and tolerance ability of Chlorella vulgaris to cadmium pollution stress. ENVIRONMENTAL TECHNOLOGY 2022; 43:4391-4401. [PMID: 34278946 DOI: 10.1080/09593330.2021.1950841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Cadmium, which is widely used in electroplating industry, chemical industry, electronic industry and nuclear industry, is harmful to human health and ecological environment. The effects of Cd at different initial concentrations on biomass, antioxidant enzyme activity and ultrastructure of Chlorella vulgaris were analysed in the present study. The results showed that C. vulgaris maintained a slow-growth trend at 3.0 mg/L Cd, and the peroxidase (POD) enzyme activity reached the highest at this concentration, which indicated that C. vulgaris could resist the oxidative damage of cells by increasing the enzyme activity, so as to improve the tolerance of C. vulgaris to Cd. When the concentration of Cd was 5.0 mg/L, although the activity of the superoxide dismutase enzyme was still very high, POD enzyme could not remove the hydrogen peroxide produced in cells in time, leading to cell damage and even death. Therefore, when the concentration reached 5.0 mg/L, the growth of C. vulgaris began to decline after four days of stress, and the cell structure was significantly damaged after six days of stress. And the higher concentration of Cd caused more Cd accumulation in cells and a serious damage to C. vulgaris. C. vulgaris can be used as an early warning indicator of Cd pollution, and it can be used for bioremediation of Cd contaminated water through tolerant subculture.
Collapse
Affiliation(s)
- Weiwei Geng
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Xinfeng Xiao
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Weiming Ni
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Na Li
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Yanjun Li
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
5
|
Nagarajan D, Lee DJ, Varjani S, Lam SS, Allakhverdiev SI, Chang JS. Microalgae-based wastewater treatment - Microalgae-bacteria consortia, multi-omics approaches and algal stress response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157110. [PMID: 35787906 DOI: 10.1016/j.scitotenv.2022.157110] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Sustainable environmental management is one of the important aspects of sustainable development goals. Increasing amounts of wastewaters (WW) from exponential economic growth is a major challenge, and conventional treatment methods entail a huge carbon footprint in terms of energy use and GHG emissions. Microalgae-based WW treatment is a potential candidate for sustainable WW treatment. The nutrients which are otherwise unutilized in the conventional processes are recovered in the beneficial microalgal biomass. This review presents comprehensive information regarding the potential of microalgae as sustainable bioremediation agents. Microalgae-bacterial consortia play a critical role in synergistic nutrient removal, supported by the complex nutritional and metabolite exchange between microalgae and the associated bacteria. Design of effective microalgae-bacteria consortia either by screening or by recent technologies such as synthetic biology approaches are highly required for efficient WW treatment. Furthermore, this review discusses the crucial research gap in microalgal WW treatment - the application of a multi-omics platform for understanding microalgal response towards WW conditions and the design of effective microalgal or microalgae-bacteria consortia based on genetic information. While metagenomics helps in the identification and monitoring of the microbial community throughout the treatment process, transcriptomics, proteomics and metabolomics aid in studying the algal cellular response towards the nutrients and pollutants in WW. It has been established that the integration of microalgal processes into conventional WW treatment systems is feasible. In this direction, future research directions for microalgal WW treatment emphasize the need for identifying the niche in WW treatment, while highlighting the pilot sale plants in existence. Microalgae-based WW treatment could be a potential phase in the waste hierarchy of circular economy and sustainability, considering WWs are a rich secondary source of finite resources such as nitrogen and phosphorus.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
6
|
Couto E, Assemany PP, Assis Carneiro GC, Ferreira Soares DC. The potential of algae and aquatic macrophytes in the pharmaceutical and personal care products (PPCPs) environmental removal: a review. CHEMOSPHERE 2022; 302:134808. [PMID: 35508259 DOI: 10.1016/j.chemosphere.2022.134808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/02/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The presence of emerging contaminants, such as pharmaceuticals and personal care products (PPCPs), in aquatic environments has received increasing attention in the last years due to the various possible impacts on the dynamics of the natural environment and human health. In global terms, around 771 active pharmaceutical substances or their transformation products have been detected at levels above their respective detection limit. Additionally, 528 different compounds have been detected in 159 countries. Seeking to overcome potential ecotoxicological problems, several studies have been conducted using different technologies for PPCPs removal. Recently, the use of macro, microalgae, and aquatic macrophytes has been highlighted due to the excellent bioremediation capacity of these organisms and easy acclimatization. Thus, the present review aims to outline a brief and well-oriented scenario concerning the knowledge about the bioremediation alternatives of PPCPs through the use of macro, microalgae, and aquatic macrophytes. The characteristics of PPCPs and the risks of these compounds to the environment and human health are also addressed. Moreover, the review indicates the opportunities and challenges for expanding the use of biotechnologies based on algae and aquatic macrophytes, such as studies dedicated to relate the operational criteria of these biotechnologies with the main PPCPs removal mechanisms. Finally, algae and macrophytes can compose green and ecological biotechnologies for wastewater treatment, having great contribution to PPCPs removal.
Collapse
Affiliation(s)
- Eduardo Couto
- Federal University of Itajuba, Institute of Pure and Applied Sciences, Campus Itabira. Rua Irmã Ivone Drumond, 200 Itabira, Minas Gerais, Brazil.
| | - Paula Peixoto Assemany
- Federal University of Lavras, Environmental Engineering Department, Campus Universitário, Lavras, Minas Gerais, Brazil
| | - Grazielle Cristina Assis Carneiro
- Federal University of Itajuba, Institute of Pure and Applied Sciences, Campus Itabira. Rua Irmã Ivone Drumond, 200 Itabira, Minas Gerais, Brazil
| | - Daniel Cristian Ferreira Soares
- Federal University of Itajuba, Institute of Pure and Applied Sciences, Campus Itabira. Rua Irmã Ivone Drumond, 200 Itabira, Minas Gerais, Brazil
| |
Collapse
|
7
|
Zhou Y, Li WB, Kumar V, Necibi MC, Mu YJ, Shi CZ, Chaurasia D, Chauhan S, Chaturvedi P, Sillanpää M, Zhang Z, Awasthi MK, Sirohi R. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective. ENVIRONMENTAL RESEARCH 2022; 211:113075. [PMID: 35271831 DOI: 10.1016/j.envres.2022.113075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Synthetic antibiotics have been known for years to combat bacterial antibiotics. But their overuse and resistance have become a concern recently. The antibiotics reach the environment, including soil from the manufacturing process and undigested excretion by cattle and humans. It leads to overburden and contamination of the environment. These organic antibiotics remain in the environment for a very long period. During this period, antibiotics come in contact with various flora and fauna. The ill manufacturing practices and inadequate wastewater treatment cause a severe problem to the water bodies. After pretreatment from pharmaceutical industries, the effluents are released to the water bodies such as rivers. Even after pretreatment, effluents contain a significant number of antibiotic residues, which affect the living organisms living in the water bodies. Ultimately, river contaminated water reaches the ocean, spreading the contamination to a vast environment. This review paper discusses the impact of synthetic organic contamination on the environment and its hazardous effect on health. In addition, it analyzes and suggests the biotechnological strategies to tackle organic antibiotic residue proliferation. Moreover, the degradation of organic antibiotic residues by biocatalyst and biochar is analyzed. The circular economy approach for waste-to-resource technology for organic antibiotic residue in China is analyzed for a sustainable solution. Overall, the significant challenges related to synthetic antibiotic residues and future aspects are analyzed in this review paper.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Wen-Bing Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Mohamed Chaker Necibi
- International Water Research Institute, Mohammed VI Polytechnic University, 43150, Ben-Guerir, Morocco
| | - Yin-Jun Mu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chang-Ze Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, Republic of Korea.
| |
Collapse
|
8
|
Dong Q, Dong H, Li Y, Xiao J, Xiang S, Hou X, Chu D. Degradation of sulfamethazine in water by sulfite activated with zero-valent Fe-Cu bimetallic nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128601. [PMID: 35255337 DOI: 10.1016/j.jhazmat.2022.128601] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
In this work, zero-valent Fe-Cu bimetallic nanoparticles were synthesized using a facile method, and applied to activate sulfite for the degradation of sulfamethazine (SMT) from the aqueous solution. The key factors influencing SMT degradation were investigated, namely the theoretical loading of Cu, Fe-Cu catalyst dosage, sulfite concentration and initial solution pH. The experimental results showed that the Fe-Cu/sulfite system exhibited a much better performance in SMT degradation than the bare Fe0/sulfite system. The mechanism and possible degradation pathway of SMT in Fe-Cu/sulfite system were revealed. The reactive radicals that played a dominant role in the SMT degradation process were •OH and SO4•-, while the loading of Cu induced the synergistic effect between Fe and Cu. The redox cycle between Cu(I)/Cu(II) remarkably contributed to the conversion of Fe(III) to Fe(II), greatly enhancing the catalytic performance of Fe-Cu bimetal. In real groundwater applications, the Fe-Cu/sulfite system also exhibited satisfactory SMT degradation. The 30-day aging tests of Fe-Cu particles demonstrated that the aging of catalyst was not obviously affecting the removal of SMT. Furthermore, the reusability of catalyst was evidenced by the recycling experiments. This study provides a promising application of bimetal activated sulfite for enhanced contaminant degradation in groundwater.
Collapse
Affiliation(s)
- Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
9
|
Xiong JQ, Zhao CY, Qin JY, Cui P, Zhong QL, Ru S. Metabolic perturbations of Lolium perenne L. by enrofloxacin: Bioaccumulation and multistage defense system. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127893. [PMID: 34865897 DOI: 10.1016/j.jhazmat.2021.127893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Plants are readily exposed to the antibiotics residues in reclaimed water indicating an urgent need to comprehensively analyze their ecotoxicological effects and fate of these emerging contaminants. Here, we unraveled the dissemination of enrofloxacin (ENR) in a pasture grass, Lolium perenne L., and identified multistage defense systems as its adaptation mechanism. Uptaken concentrations of ENR ranged from 1.28 to 246.60 µg g-1 with bioconcentration factors (BCF) upto 15.13, and translocation factors (TF) upto 0.332. The antioxidant enzymatic activities such as superoxide dismutase, peroxidase, and catalase were increased by upto 115%. Further transcriptomics demonstrated that differentially expressed genes (DEGs) involved in glycolysis, tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and glutathione metabolism were significantly up-regulated by 1.56-5.93, 3-7 and 1.04-6.42 times, respectively; whilst, the DEGs in nitrogen and sulfur metabolism pathways were significantly up-regulated by 1.06-5.64 and 2.64-3.54 folds. These processes can supply energy, signaling molecules, and antioxidants for detoxification of ENR in ryegrass. Such results provide understanding into fasting grass adaptability to antibiotics by enhancing the key protective pathways under organic pollutant stresses in environments.
Collapse
Affiliation(s)
- Jiu-Qiang Xiong
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266100, Shandong, China.
| | - Chen-Yu Zhao
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266100, Shandong, China
| | - Jing-Yu Qin
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266100, Shandong, China
| | - Pengfei Cui
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266100, Shandong, China
| | - Qiu-Lian Zhong
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266100, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266100, Shandong, China.
| |
Collapse
|
10
|
Rane NR, Tapase S, Kanojia A, Watharkar A, Salama ES, Jang M, Kumar Yadav K, Amin MA, Cabral-Pinto MMS, Jadhav JP, Jeon BH. Molecular insights into plant-microbe interactions for sustainable remediation of contaminated environment. BIORESOURCE TECHNOLOGY 2022; 344:126246. [PMID: 34743992 DOI: 10.1016/j.biortech.2021.126246] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The widespread distribution of organic and inorganic pollutants in water resources have increased due to rapid industrialization. Rhizospheric zone-associated bacteria along with endophytic bacteria show a significant role in remediation of various pollutants. Metaomics technologies are gaining an advantage over traditional methods because of their capability to obtain detailed information on exclusive microbial communities in rhizosphere of the plant including the unculturable microorganisms. Transcriptomics, proteomics, and metabolomics are functional methodologies that help to reveal the mechanisms of plant-microbe interactions and their synergistic roles in remediation of pollutants. Intensive analysis of metaomics data can be useful to understand the interrelationships of various metabolic activities between plants and microbes. This review comprehensively discusses recent advances in omics applications made hitherto to understand the mechanisms of plant-microbe interactions during phytoremediation. It extends the delivery of the insightful information on plant-microbiomes communications with an emphasis on their genetic, biochemical, physical, metabolic, and environmental interactions.
Collapse
Affiliation(s)
- Niraj R Rane
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Savita Tapase
- Department of Biotechnology, Shivaji University, Kolhapur 416004, India
| | - Aakansha Kanojia
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Anuprita Watharkar
- Amity Institute of Biotechnology, Amity University, Bhatan, Panvel, Mumbai, India
| | - El-Sayed Salama
- Occupational and Environmental Health Department, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jyoti P Jadhav
- Department of Biochemistry, Shivaji University, Kolhapur 416004, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
11
|
Rempel A, Gutkoski JP, Nazari MT, Biolchi GN, Cavanhi VAF, Treichel H, Colla LM. Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144918. [PMID: 33578141 DOI: 10.1016/j.scitotenv.2020.144918] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Emerging contaminants (EC) have been detected in effluents and drinking water in concentrations that can harm to a variety of organisms. Therefore, several technologies are developed to treat these compounds, either for their complete removal or degradation in less toxic by-products. Some technologies applied to the treatment of EC, such as adsorption, advanced oxidative processes, membrane separation processes, and bioremediation through microalgal metabolism, were identified by thematic maps. In this review, we used a bibliometric software from >1000 articles. These manuscripts, in general, present removals from 0% to 100% for different ECs. This efficiency varies between treatment technologies and the contaminants' physical-chemical properties and their concentration and operational parameters. This review explored the bioremediation of EC through microalgae with greater emphasis. The main mechanisms of action of microalgae in the bioremediation of ECs are biodegradation bioadsorption, and bioaccumulation. Also, physicochemical properties and removal efficiencies of >50 emerging contaminants are presented. Although there are challenges related to the generation of more toxic by-products and economic and environmental viability, these can be minimized with advances in the development of treatment technologies and even through the integration of different techniques to make the treatment of contaminants emerging from environmental media more sustainable.
Collapse
Affiliation(s)
- Alan Rempel
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Julia Pedó Gutkoski
- Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Mateus Torres Nazari
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Gabrielle Nadal Biolchi
- Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, 99700-000 Erechim, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil.
| |
Collapse
|
12
|
Xiong JQ, Cui P, Ru S, Govindwar SP, Kurade MB, Jang M, Kim SH, Jeon BH. Unravelling metabolism and microbial community of a phytobed co-planted with Typha angustifolia and Ipomoea aquatica for biodegradation of doxylamine from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123404. [PMID: 32659588 DOI: 10.1016/j.jhazmat.2020.123404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical contaminants in environment induce unexpected effects on ecological systems and human; thus, development of efficient technologies for their removal is immensely necessary. In this study, biodegradation and metabolic fate of a frequently found pharmaceutical contaminant, doxylamine by Typha angustifolia and Ipomoea aquatica was investigated. Microbial community of the plant rhizosphere has been identified to understand the important roles of the functional microbes. The plants reduced 48-80.5 % of doxylamine through hydrolysis/dehydroxylation and carbonylation/decarbonylation. A constructed phytobed co-planted with T. angustifolia and I. aquatica removed 77.3 %, 100 %, 83.67 %, and 61.13 % of chemical oxygen demand, total nitrogen, total phosphorus, and doxylamine respectively from real wastewater. High-throughput sequencing of soil and rhizosphere indicated that the phyla Proteobacteria, Bacteroidetes, Firmicutes, Planctomycetes, Actinobacteria, and Cyanobacteria dominated the microbial communities of the phytobed. Current study has demonstrated the applicability of the developed phytobeds for the treatment of doxylamine from municipal wastewater and provide a comprehensive understanding of its metabolism through plant and its rhizospheric microbial communities.
Collapse
Affiliation(s)
- Jiu-Qiang Xiong
- College of Marine Life Science, Ocean University of China, Yushan 5, Qingdao, 266003, China
| | - Pengfei Cui
- College of Marine Life Science, Ocean University of China, Yushan 5, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Science, Ocean University of China, Yushan 5, Qingdao, 266003, China
| | - Sanjay P Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowun-gu, Seoul, 01897, South Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
13
|
Liu B, Zhang SG, Chang CC. Emerging pollutants-Part II: Treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1603-1617. [PMID: 32706436 DOI: 10.1002/wer.1407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Emerging pollutants (EPs) refer to a class of pollutants, which are emerging in the environment or recently attracted attention. EPs mainly include pharmaceutical and personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), and antibiotic resistance genes (ARGs). EPs have potential threats to human health and ecological environment. In recent years, the continuous detections of EPs in surface and ground water have brought huge challenges to water treatment and also made the treatment of EPs become an international research hotspot. This paper summarizes some research results on EPs treatment published in 2019. This paper may be helpful to understand the current situations and development trends of EP treatment technologies.
Collapse
Affiliation(s)
- Bo Liu
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, China
| | - Shen-Gen Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, China
| | - Chein-Chi Chang
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, District of Columbia
| |
Collapse
|