1
|
Hammerschmiedt T, Holatko J, Bytesnikova Z, Skarpa P, Richtera L, Kintl A, Pekarkova J, Kucerik J, Jaskulska I, Radziemska M, Valova R, Malicek O, Brtnicky M. The impact of single and combined amendment of elemental sulphur and graphene oxide on soil microbiome and nutrient transformation activities. Heliyon 2024; 10:e38439. [PMID: 39391508 PMCID: PMC11466584 DOI: 10.1016/j.heliyon.2024.e38439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Background Sulphur (S) deficiency has emerged in recent years in European soils due to the decreased occurrence of acid rains. Elemental sulphur (S0) is highly beneficial as a source of S in agriculture, but it must be oxidized to a plant-accessible form. Micro- or nano-formulated S0 may undergo accelerated transformation, as the oxidation rate of S0 indirectly depends on particle size. Graphene oxide (GO) is a 2D-carbon-based nanomaterial with benefits as soil amendment, which could modulate the processes of S0 oxidation. Micro-and nano-sized composites, comprised of S0 and GO, were tested as soil amendments in a pot experiment with unplanted soil to assess their effects on soil microbial biomass, activity, and transformation to sulphates. Fourteen different variants were tested, based on solely added GO, solely added micro- or nano-sized S0 (each in three different doses) and on a combination of all S0 doses with GO. Results Compared to unamended soil, nano-S0 and nano-S0+GO increased soil pH(CaCl2). Micro-S0 (at a dose 4 g kg-1) increased soil pH(CaCl2), whereas micro-S0+GO (at a dose 4 g kg-1) decreased soil pH(CaCl2). The total bacterial and ammonium oxidizer microbial abundance decreased due to micro-S0 and nano-S0 amendment, with an indirect dependence on the amended dose. This trend was alleviated by the co-application of GO. Urease activity showed a distinct response to micro-S0+GO (decreased value) and nano-S0+GO amendment (increased value). Arylsulfatase was enhanced by micro-S0+GO, while sulphur reducing bacteria (dsr) increased proliferation due to high micro-S0 and nano-S0, and co-amendment of both with GO. In comparison to nano-S0, the amendment of micro-S0+GO more increased soluble sulphur content more significantly. Conclusions Under the conditions of this soil experiment, graphene oxide exhibited a significant effect on the process of sulphur oxidation.
Collapse
Affiliation(s)
- Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Agrovyzkum Rapotin, Ltd., Vyzkumniku 863, 788 13, Rapotin, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Agricultural Research, Ltd., Zahradni 400, 664 41, Troubsko, Czech Republic
| | - Jana Pekarkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic
| | - Jiri Kucerik
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Iwona Jaskulska
- Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. S. Kaliskiego St., 85-796, Bydgoszcz, Poland
| | - Maja Radziemska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Radmila Valova
- Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Ondrej Malicek
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| |
Collapse
|
2
|
Li M, Prévot V, You Z, Forano C. Highly selective and efficient Pb 2+ capture using PO 4-loaded 3D-NiFe layer double hydroxides derived from MIL-88A. CHEMOSPHERE 2024; 364:143070. [PMID: 39142393 DOI: 10.1016/j.chemosphere.2024.143070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Lead (Pb) contamination in water requires improved decontamination technologies. The addition of phosphate to precipitate Pb2+ is a widely used method for remediating Pb in soil and water, though it has certain limitations. This study focuses on novel 3D mesoporous layered double hydroxide (LDH) sorbents functionalized with phosphate anions for Pb2+ removal from contaminated waters. Our innovative strategy involves converting a sacrificial template metal-organic frameworks (MOFs) structure (MIL-88A(Fe)) into NixFe LDH, followed by an anion exchange reaction with phosphate anions. This process preserves the 3D microrod architecture of MIL-88A and prevents deleterious LDH particle aggregation. The synthesis results in stable microrod crystals, 1-2 μm long, composed of 3D assemblies of NixFe-PO4 LDH nanoplatelets with a specific surface area exceeding 110 m2/g. The novel LDH materials display fast adsorption kinetics (pseudo-second order model) and remarkably high Pb2+ removal performances (Langmuir isotherm model) with a capacity of 538 mg/g, surpassing other reported adsorbents. LDH-PO4 exhibits high selectivity for Pb2+ over competing ions like Ni2+ and Cd2+ (selectivity order is: Pb2+ > Ni2+ > Cd2+). Removal of Pb2+ from NixFeLDH/88A-PO4 involves various mechanisms, including surface complexation and surface precipitation of lead phosphate or lead hydroxide phases as revealed by structural characterization techniques.
Collapse
Affiliation(s)
- Mengwei Li
- School of Resource and Environmental Sciences, Wuhan University, China; Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France
| | - Vanessa Prévot
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France
| | - Zhixiong You
- School of Resource and Environmental Sciences, Wuhan University, China.
| | - Claude Forano
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Bayuo J, Rwiza MJ, Choi JW, Mtei KM, Hosseini-Bandegharaei A, Sillanpää M. Adsorption and desorption processes of toxic heavy metals, regeneration and reusability of spent adsorbents: Economic and environmental sustainability approach. Adv Colloid Interface Sci 2024; 329:103196. [PMID: 38781828 DOI: 10.1016/j.cis.2024.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
A growing number of variables, including rising population, water scarcity, growth in the economy, and the existence of harmful heavy metals in the water supply, are contributing to the increased demand for wastewater treatment on a global scale. One of the innovative water treatment technologies is the adsorptive removal of heavy metals through the application of natural and engineered adsorbents. However, adsorption currently has setbacks that prevent its wider application for heavy metals sequestration from aquatic environments using various adsorbents, including difficulty in selecting suitable desorption eluent to recover adsorbed heavy metals and regeneration techniques to recycle the spent adsorbents for further use and safe disposal. Therefore, the recovery of adsorbed heavy metal ions and the ability to reuse the spent adsorbents is one of the economic and environmental sustainability approaches. This study presents a state-of-the-art critical review of different desorption agents that could be used to retrieve heavy metals and regenerate the spent adsorbents for further adsorption-desorption processes. Additionally, an attempt was made to discuss and summarize some of the independent factors influencing heavy metals desorption, recovery, and adsorbent regeneration. Furthermore, isotherm and kinetic modeling have been summarized to provide insights into the adsorption-desorption mechanisms of heavy metals. Finally, the review provided future perspectives to provide room for researchers and industry players who are interested in heavy metals desorption, recovery, and spent adsorbents recycling to reduce the high cost of adsorbents reproduction, minimize secondary waste generation, and thereby provide substantial economic and environmental benefits.
Collapse
Affiliation(s)
- Jonas Bayuo
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-daero1447, Gangwon-do, South Korea; School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania; Department of Science Education, School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Postal Box 24, Navrongo, Upper East Region, Ghana.
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| | - Joon Weon Choi
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-daero1447, Gangwon-do, South Korea
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Adnan Kassar School of Business, Lebanese American University, Beirut, Lebanon; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248007, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India; Division of Research & Development, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
4
|
Felipe Melo Lima Gomes B, Araujo CMBD, do Nascimento BF, Silva Santos RKD, Freire EMPDL, Da Motta Sobrinho MA, Carvalho MN. Adsorption of Cd (II) ions and methyl violet dye by using an agar-graphene oxide nano-biocomposite. ENVIRONMENTAL TECHNOLOGY 2024; 45:2957-2968. [PMID: 37002614 DOI: 10.1080/09593330.2023.2198732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In this work, an agar-graphene oxide hydrogel was prepared to adsorb Cd (II) and Methyl Violet (MV) from water. The hydrogel was synthesised and characterised through SEM and EDS. Kinetic, equilibrium and regeneration studies were carried out, in which Langmuir, Freundlich and Sips isotherm models were fitted to the equilibrium experimental data; and regarding the kinetics, studies were conducted by modelling experimental data considering both empirical and phenomenological models. SEM and EDS have shown the composite present a 3D-disordered porous microstructure and that it is mainly constituted of C and O. Sips model fitted well to Cd (II) (R2 = 0.968 and χ2 = 0.176) and MV (R2 = 0.993 and χ2 = 0.783). The qmax values for MV and Cd (II) were 76.65 and 11.70 mg.g-1, respectively. Pseudo-order models satisfactorily described Cd (II) and MV adsorption kinetics with R2 > 0.90. Regeneration experiments revealed an outstanding reuse capacity of the adsorbent after three cycles of adsorption-desorption for both Cd (II) and MV. This study evidences the possibility of a feasible adsorbent for Cd (II) and MV removal from water for successive cycles of use.
Collapse
Affiliation(s)
- Brener Felipe Melo Lima Gomes
- Group of Physical Organic Chemistry (GPOC), Department of Chemistry, Institute of Biological and Exact Sciences, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
- Department of Rural Technology, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | | | | | | | | | | | - Marilda Nascimento Carvalho
- Department of Rural Technology, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
- Department of Chemical Engineering, Universidade Federal de Pernambuco, Recife-PE, Brazil
| |
Collapse
|
5
|
Xu K, Guo Y, Xing C, Fu R, Zou B, Liu R, Cai L, Yan J, Wu XL, Cai M. Graphitic carbon nitride nanosheets mitigate cadmium toxicity in Glycine max L. by promoting cadmium retention in root and improving photosynthetic performance. J Environ Sci (China) 2024; 139:543-555. [PMID: 38105075 DOI: 10.1016/j.jes.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 12/19/2023]
Abstract
Cadmium (Cd) pollution poses a serious threat to plant growth and yield. Nanomaterials have shown great application potential for alleviation of Cd toxicity to plants. In this study, we applied graphitic carbon nitride nanosheets (g-C3N4 NSs) for alleviation of Cd-toxicity to soybean (Glycine max L.). The g-C3N4 NSs supplementation significantly improved plant growth and reduced oxidative damage in the Cd-toxicated soybean seedlings through hydroponic culture. Particularly, the g-C3N4 NSs dynamically regulated the root cell wall (RCW) components by increasing pectin content and modifying its demethylation via enhancing pectin methylesterase (PME) activity, therefore greatly enhanced stronger RCW-Cd retention (up to 82.8%) and reduced Cd migration to the shoot. Additionally, the g-C3N4 NSs reversed the Cd-induced chlorosis, increased photosynthetic efficiency because of enhancement in Fv/Fm ration, Y(II) and sugars content. These results provide new insights into the alleviation of Cd toxicity to plants by g-C3N4 NSs, and shed light on the application of low-cost and environmental-friendly carbon-based NMs for alleviating heavy metal toxicity to plants.
Collapse
Affiliation(s)
- Kai Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yunyu Guo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chenghua Xing
- College of Agriculture, Jinhua Polytechnic, Jinhua 321007, China
| | - Ronglong Fu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bin Zou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Rongchuan Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Luyi Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jianfang Yan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xi-Lin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
6
|
He Q, Li X, Chai W, Chen L, Mao X. A novel functionalized graphdiyne oxide membrane for efficient removal and rapid detection of mercury in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133711. [PMID: 38340563 DOI: 10.1016/j.jhazmat.2024.133711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In practice, efficient, rapid and simple removal of Hg(II) from water using nano adsorbents remains an extreme challenge at present. In this work, a novel Hg(II) adsorbent based on functionalized graphdiyne oxide (GDYO-3M) membrane was designed for the purpose of effective and prompt removal of Hg(II) from environmental water for the first time. Through filtration, the proposed GDYO-3M membrane (4 cm diameter size) fulfilled an exceeding 97% removal efficiency in > 10 L water containing 0.1 mg/L Hg(II) within 1 h. Due to the presence of -SH groups, the GDYO-3M membrane demonstrates an excellent selectivity for Hg(II) vs. 14 co-existing metal ions. In the meantime, the GDYO-3M membrane represents a favorable reproducibility (above 95% Hg(II) removal) after 9 successive adsorption-desorption cycles. For the mechanism, it is believed that the active sites in the adsorption process mainly include -SH groups, oxygen-containing functional groups, and alkyne bonds. Further, the GDYO-3M membrane can be utilized as an enrichment approach for sensitive analysis of Hg(II) in water based on energy dispersion X-ray fluorescence spectrometry (ED-XRF), whose detection limit (LOD) reaches 0.2 μg/L within 15 min. This work not only provides a green and efficient method for removing Hg(II), but also renders an approach for rapid, sensitive and portable Hg(II) detection in water.
Collapse
Affiliation(s)
- Qianli He
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Weiwei Chai
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lin Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
7
|
Dadvar F, Elhamifar D. Magnetic silica/graphene oxide nanocomposite supported ionic liquid-manganese complex as a powerful catalyst for the synthesis of tetrahydrobenzopyrans. Sci Rep 2023; 13:19354. [PMID: 37935907 PMCID: PMC10630333 DOI: 10.1038/s41598-023-46629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
A novel magnetic silica/graphene oxide nanocomposite supported ionic liquid/manganese complex (Fe3O4@SiO2-NH2/GO/IL-Mn) is prepared, characterized and its catalytic application is investigated. The Fe3O4@SiO2-NH2/GO/IL-Mn catalyst was synthesized via chemical immobilization of graphene oxide on Fe3O4@SiO2 nanoparticles followed by modification with ionic liquid/Mn complex. This nanocomposite was characterized by using SEM, TGA, FT-IR, PXRD, EDX, TEM, nitrogen adsorption-desorption, and VSM analyses. The catalytic application of Fe3O4@SiO2-NH2/GO/IL-Mn was studied in the synthesis of tetrahydrobenzo[b]pyrans (THBPs) in water solvent at RT. This nanocatalyst was successfully recovered and reused at least eight times without a significant decrease in its activity.
Collapse
Affiliation(s)
- Farkhondeh Dadvar
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| | - Dawood Elhamifar
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran.
| |
Collapse
|
8
|
Zareh M, Ahmed R, Saleem N, Abd-ElSattar A. Graphene oxide versus activated charcoal for La-electrochemical sensor. MATERIALS SCIENCE AND ENGINEERING: B 2023; 292:116389. [DOI: 10.1016/j.mseb.2023.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Nolan N, Hayward MW, Klop-Toker K, Mahony M, Lemckert F, Callen A. Complex Organisms Must Deal with Complex Threats: How Does Amphibian Conservation Deal with Biphasic Life Cycles? Animals (Basel) 2023; 13:1634. [PMID: 37238064 PMCID: PMC10215276 DOI: 10.3390/ani13101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The unprecedented rate of global amphibian decline is attributed to The Anthropocene, with human actions triggering the Sixth Mass Extinction Event. Amphibians have suffered some of the most extreme declines, and their lack of response to conservation actions may reflect challenges faced by taxa that exhibit biphasic life histories. There is an urgent need to ensure that conservation measures are cost-effective and yield positive outcomes. Many conservation actions have failed to meet their intended goals of bolstering populations to ensure the persistence of species into the future. We suggest that past conservation efforts have not considered how different threats influence multiple life stages of amphibians, potentially leading to suboptimal outcomes for their conservation. Our review highlights the multitude of threats amphibians face at each life stage and the conservation actions used to mitigate these threats. We also draw attention to the paucity of studies that have employed multiple actions across more than one life stage. Conservation programs for biphasic amphibians, and the research that guides them, lack a multi-pronged approach to deal with multiple threats across the lifecycle. Conservation management programs must recognise the changing threat landscape for biphasic amphibians to reduce their notoriety as the most threatened vertebrate taxa globally.
Collapse
Affiliation(s)
- Nadine Nolan
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Matthew W. Hayward
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Kaya Klop-Toker
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Michael Mahony
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Frank Lemckert
- Eco Logical Australia Pty Ltd., Perth, WA 6000, Australia;
| | - Alex Callen
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| |
Collapse
|
10
|
Hammerschmiedt T, Holatko J, Zelinka R, Kintl A, Skarpa P, Bytesnikova Z, Richtera L, Mustafa A, Malicek O, Brtnicky M. The combined effect of graphene oxide and elemental nano-sulfur on soil biological properties and lettuce plant biomass. FRONTIERS IN PLANT SCIENCE 2023; 14:1057133. [PMID: 36998685 PMCID: PMC10043190 DOI: 10.3389/fpls.2023.1057133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
The impact of graphene oxide (GO) nanocarbon on soil properties is mixed, with both negative and positive effects. Although it decreases the viability of some microbes, there are few studies on how its single amendment to soil or in combination with nanosized sulfur benefits soil microorganisms and nutrient transformation. Therefore, an eight-week pot experiment was carried out under controlled conditions (growth chamber with artificial light) in soil seeded with lettuce (Lactuca sativa) and amended with GO or nano-sulfur on their own or their several combinations. The following variants were tested: (I) Control, (II) GO, (III) Low nano-S + GO, (IV) High nano-S + GO, (V) Low nano-S, (VI) High nano-S. Results revealed no significant differences in soil pH, dry plant aboveground, and root biomass among all five amended variants and the control group. The greatest positive effect on soil respiration was observed when GO was used alone, and this effect remained significant even when it was combined with high nano-S. Low nano-S plus a GO dose negatively affected some of the soil respiration types: NAG_SIR, Tre_SIR, Ala_SIR, and Arg_SIR. Single GO application was found to enhance arylsulfatase activity, while the combination of high nano-S and GO not only enhanced arylsulfatase but also urease and phosphatase activity in the soil. The elemental nano-S probably counteracted the GO-mediated effect on organic carbon oxidation. We partially proved the hypothesis that GO-enhanced nano-S oxidation increases phosphatase activity.
Collapse
Affiliation(s)
- Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agrovyzkum Rapotin, Ltd., Rapotin, Czechia
| | - Radim Zelinka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agricultural Research, Ltd., Troubsko, Czechia
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Adnan Mustafa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Praha, Czechia
| | - Ondrej Malicek
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| |
Collapse
|
11
|
Deshwal N, Singh MB, Bahadur I, Kaushik N, Kaushik NK, Singh P, Kumari K. A review on recent advancements on removal of harmful metal/metal ions using graphene oxide: Experimental and theoretical approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159672. [PMID: 36306838 DOI: 10.1016/j.scitotenv.2022.159672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide is a two-dimensional carbon nanomaterial and has gained huge popularity over the last decade. Because, the graphene oxide can be dispersed in water easily and it is one of the most researched two-dimensional materials in the current time. The extraordinary properties shown by graphene oxide (GO) are due to its unique chemical structure; includes various hydrophilic functional groups containing oxygen such as carboxyl, hydroxyl, carbonyl and tiny sp2 carbon domains surrounded by sp3 domains. These groups are very peculiar for various applications as they allow covalent functionalisation with a plethora of compounds. Large surface area, intrinsic fluorescence, excellent surface functionality, amphiphilicity, improved conductivity, high adsorption capacity and superior biocompatibility are some of the chemical properties have drawn research from various fields. Graphene oxide has various interactions such as coordination, chelation, hydrogen bonding, electrostatic interaction, hydrophobic effects, π-π interaction, acid base interaction etc., with various metal ions. This review is focused on the removal of metals and metal ions due to their interactions mentioned above. Further, potential of composites of graphene oxide in the removal of metal and metal ions is also discussed. Further, the current challenges in this field at industrial-scale are also discussed.
Collapse
Affiliation(s)
- Nidhi Deshwal
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Madhur Babu Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, South Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| |
Collapse
|
12
|
Arefkhani M, Babaei A, Masoudi M, Kafashan A. A step forward to overcome the cytotoxicity of graphene oxide through decoration with tragacanth gum polysaccharide. Int J Biol Macromol 2023; 226:1411-1425. [PMID: 36442552 DOI: 10.1016/j.ijbiomac.2022.11.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hybridization of nanomaterials (NMs) with natural polymers is one of the best techniques to promote their exciting properties. In this way, the main objective of this work was to investigate the efficiency of decoration of the graphene oxide (GO) nano-sheets with tragacanth gum (TG) polysaccharide. To aim this, different approaches were used (with and without ultrasonic treatment) and various tests (XRD, FTIR, Raman, UV-Vis, DLS, Zeta potential, contact angle, AFM, FE-SEM, TEM, and MTT assay) were conducted. Test results indicated that the nano-hybrids were successfully synthesized. Furthermore, our findings represented that, the TG hybridized GO (TG-GO) appreciably enhanced the biocompatibility of GO. Moreover, it was demonstrated that the ultrasonic treatment of TG solution put a remarkable impact on the microstructure, wettability, and also surface charge characteristic of fabricated nano-hybrids and consequently improved the biocompatibility against L929-fibroblast cells.
Collapse
Affiliation(s)
- Mahdi Arefkhani
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| | - Maha Masoudi
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Azade Kafashan
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| |
Collapse
|
13
|
Sarmiento V, Lockett M, Sumbarda-Ramos EG, Vázquez-Mena O. Effective Removal of Metal ion and Organic Compounds by Non-Functionalized rGO. Molecules 2023; 28:649. [PMID: 36677707 PMCID: PMC9864598 DOI: 10.3390/molecules28020649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Effective removal of heavy metals from water is critical for environmental safety and public health. This work presents a reduced graphene oxide (rGO) obtained simply by using gallic acid and sodium ascorbate, without any high thermal process or complex functionalization, for effective removal of heavy metals. FTIR and Raman analysis show the effective conversion of graphene oxide (GO) into rGO and a large presence of defects in rGO. Nitrogen adsorption isotherms show a specific surface area of 83.5 m2/g. We also measure the zeta-potential of the material showing a value of -52 mV, which is lower compared to the -32 mV of GO. We use our rGO to test adsorption of several ion metals (Ag (I), Cu (II), Fe (II), Mn (II), and Pb(II)), and two organic contaminants, methylene blue and hydroquinone. In general, our rGO shows strong adsorption capacity of metals and methylene blue, with adsorption capacity of qmax = 243.9 mg/g for Pb(II), which is higher than several previous reports on non-functionalized rGO. Our adsorption capacity is still lower compared to functionalized graphene oxide compounds, such as chitosan, but at the expense of more complex synthesis. To prove the effectiveness of our rGO, we show cleaning of waste water from a paper photography processing operation that contains large residual amounts of hydroquinone, sulfites, and AgBr. We achieve 100% contaminants removal for 20% contaminant concentration and 63% removal for 60% contaminant concentration. Our work shows that our simple synthesis of rGO can be a simple and low-cost route to clean residual waters, especially in disadvantaged communities with low economical resources and limited manufacturing infrastructure.
Collapse
Affiliation(s)
- Viviana Sarmiento
- Facultad de Odontología, Universidad Autónoma de Baja California, Tijuana 22427, BC, Mexico
- Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Malcolm Lockett
- Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Emigdia Guadalupe Sumbarda-Ramos
- Facultad de Ciencias de la Ingeniería y Tecnología (FCITEC), Universidad Autónoma de Baja California, Valle de las Palmas, Tijuana 22427, BC, Mexico
| | - Oscar Vázquez-Mena
- Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Improvement in Migration Resistance of Hydroxyl-Terminated Polybutadiene (HTPB) Liners by Using Graphene Barriers. Polymers (Basel) 2022; 14:polym14235213. [PMID: 36501607 PMCID: PMC9740540 DOI: 10.3390/polym14235213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
The excessive migration of plasticizers leads to debonding and cracking of a liner, which can compromise the safety of a solid propellant. Graphene oxide (GO), with a laminar structure as a filler, can effectively reduce the migration of plasticizers. In this study, we modified GO using toluene diisocyanate (TDI). The cross-link density of the substrate was increased by grafting isocyanate groups to obtain a denser liner for the purpose of preventing plasticizer migration. We also used octadecylamine (ODA) to modify GO by grafting negatively charged amide groups on the GO surface. The electrostatic repulsive effect of the amide group on the plasticizer molecules was used to prevent plasticizer migration. Two modified GOs were filled into the hydroxyl-terminated polybutadiene to prepare two composite liners. We then investigated the migration resistance and migration kinetics of each modified liner using the dipping method. In addition, we explored the mechanical properties of each modified liner. Compared with the original liner, the anti-migration and mechanical properties of the modified composite liners were significantly improved. Among them, the TDI-modified liner had the most obvious improvement in migration resistance, while the ODA-modified liner had the greatest improvement in bonding properties. All types of liners met the requirements of the current propellant systems. This study provides an effective reference for improving the migration resistance and bonding properties of the composite liner.
Collapse
|
15
|
Copolymer-type magnetic graphene oxide with dual-function for adsorption of variety of dyes. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Rajendran S, Priya AK, Senthil Kumar P, Hoang TKA, Sekar K, Chong KY, Khoo KS, Ng HS, Show PL. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. CHEMOSPHERE 2022; 303:135146. [PMID: 35636612 DOI: 10.1016/j.chemosphere.2022.135146] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
This review provides a quantitative description of the nano-adsorbent processing and its viability against wastewater detoxification by extracting heavy metal ions. The impact of nano-adsorbent functionalities on specific essential attributes such as the surface area, segregation, and adsorption capacity were comprehensively evaluated. A detailed analysis has been presented on the characteristics of nanomaterials through their limited resistance to adsorb some heavy metal ions. Experimental variables such as the adsorbent dosage, pH, substrate concentration, response duration, temperature, and electrostatic force that influence the uptake of metal ions have been studied. Besides, separate models for the adsorption kinetics and isothermal adsorption have been investigated to understand the mechanism behind adsorption. Here, we reviewed the different adsorbent materials with nano-based techniques for the removal of heavy metals from wastewater and especially highlighted the nano adsorption technique. The influencing factors such as pH, temperature, dosage time, sorbent dosage, adsorption capacities, ion concentration, and mechanisms related to the removal of heavy metals by nano composites are highlighted. Lastly, the application potentials and challenges of nano adsorption for environmental remediation are discussed. This critical review would benefit engineers, chemists, and environmental scientists involved in the utilization of nanomaterials for wastewater treatment.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, Boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Karthikeyan Sekar
- Department of Chemistry, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Kar Yeen Chong
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hui Suan Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
17
|
Jinadasa KK, Peña-Vázquez E, Bermejo-Barrera P, Moreda-Piñeiro A. Smart materials for mercury and arsenic determination in food and beverages. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
De Beni E, Giurlani W, Fabbri L, Emanuele R, Santini S, Sarti C, Martellini T, Piciollo E, Cincinelli A, Innocenti M. Graphene-based nanomaterials in the electroplating industry: A suitable choice for heavy metal removal from wastewater. CHEMOSPHERE 2022; 292:133448. [PMID: 34973258 DOI: 10.1016/j.chemosphere.2021.133448] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/30/2021] [Accepted: 12/24/2021] [Indexed: 05/19/2023]
Abstract
The presence of various heavy metal ions in the industrial waste waters has recently been a challenging issue for human health. Since heavy metals are highly soluble in the aquatic environments and they can be absorbed easily by living organisms, their removal is essential from the environmental point of view. Many studies have been devoted to investigating the environmental behaviour of graphene-based nanomaterials as sorbent agents to remove metals from wastewaters arising by galvanic industries. Among the graphene derivates, especially graphene oxide (GO), due to its abundant oxygen functional groups, high specific area and hydrophilicity, is a high-efficient adsorbent for the removal of heavy and precious metals in aquatic environment. This paper reviews the main graphene, GO, functionalized GO and their composites and its applications in the metals removal process. The influencing factors, adsorption capacities and reuse capability are highlighted for the most extensively used heavy metals, including copper, zinc, nickel, chromium, cobalt and precious metals (i.e., gold, silver, platinum, palladium, rhodium, and ruthenium) in the electroplating process.
Collapse
Affiliation(s)
- Eleonora De Beni
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy.
| | - Walter Giurlani
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
| | - Lorenzo Fabbri
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy
| | - Roberta Emanuele
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy
| | - Saul Santini
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy
| | - Chiara Sarti
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
| | | | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy
| | - Massimo Innocenti
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121, Firenze, Italy; Center for Colloid and Surface Science (CSGI), Via Della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy; Insititute of Chemistry of Organometallic Compounds (ICCOM) - National Research Council (CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, (FI), Italy
| |
Collapse
|
19
|
Gomes BFML, de Araújo CMB, do Nascimento BF, Freire EMPDL, Da Motta Sobrinho MA, Carvalho MN. Synthesis and application of graphene oxide as a nanoadsorbent to remove Cd (II) and Pb (II) from water: adsorption equilibrium, kinetics, and regeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17358-17372. [PMID: 34664163 DOI: 10.1007/s11356-021-16943-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
In this work, graphene oxide (GO) was synthesized by the modified Hummers method. The nanomaterial was characterized by FTIR and Raman spectroscopy, SEM, and pH at the point of zero charge. GO exhibited typical characteristics of graphene-based materials, indicating that graphite oxidation and exfoliation occurred successfully. Cd (II) and Pb (II) adsorption onto GO was carried out in batch systems, in which the effect of adsorbent dosage, contact time, and initial adsorbate concentration were evaluated. Langmuir, Freundlich, and Sips isotherm models, as well as pseudo order models and Elovich kinetic equation were applied to adsorption experimental data. Results indicated that increasing adsorbent mass, the removal efficiency of Cd (II) and Pb (II) increased. Freundlich isotherm better described Pb (II) adsorption (R2 = 0.96), while Cd (II) isotherm showed linear behavior. From the Akaike's AIC parameter, kinetic data were satisfactorily described by pseudo-first order (Cd (II)) and pseudo-n order (Pb (II)) models. GO was successfully subjected to five regeneration cycles, maintaining high efficiency (> 90%) in all cycles. GO showed high potential for the adsorption of Cd (II) and Pb (II) from aqueous solution, due to its high adsorption capacity, rapid Cd (II) and Pb (II) intakes, and great regeneration performance.
Collapse
Affiliation(s)
- Brener Felipe Melo Lima Gomes
- Department of Rural Technology, Universidade Federal Rural de Pernambuco, R. Dom Manuel de Medeiros, Recife, PE, 52171-900, Brazil.
| | - Caroline Maria Bezerra de Araújo
- Department of Chemical Engineering, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Recife, PE, 50670-910, Brazil
| | - Bruna Figueiredo do Nascimento
- Department of Chemical Engineering, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Recife, PE, 50670-910, Brazil
| | | | - Mauricio Alves Da Motta Sobrinho
- Department of Chemical Engineering, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Recife, PE, 50670-910, Brazil
| | - Marilda Nascimento Carvalho
- Department of Chemical Engineering, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Recife, PE, 50670-910, Brazil
| |
Collapse
|
20
|
Rezania S, Mojiri A, Park J, Nawrot N, Wojciechowska E, Marraiki N, Zaghloul NSS. Removal of lead ions from wastewater using lanthanum sulfide nanoparticle decorated over magnetic graphene oxide. ENVIRONMENTAL RESEARCH 2022; 204:111959. [PMID: 34474032 DOI: 10.1016/j.envres.2021.111959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, the new lanthanum sulfide nanoparticle (La2S3) was synthesized and incorporated onto magnetic graphene oxide (MGO) sheets surface to produce potential adsorbent (MGO@LaS) for efficient removal of lead ions (Pb2+) from wastewater. The synthesized MGO@LaS adsorbent was characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. The effective parameters on the adsorption process including solution pH (~5), adsorbent dosage (20 mg), contact time (40 min), initial Pb2+ concentration and temperature were studied. The removal efficiency was obtained >95% for lead ions at pH 5 with 20 mg adsorbent. To validate the adsorption rate and mechanism, the kinetic and thermodynamic models were studied based on experimental data. The Langmuir isotherm model was best fitted to initial equilibrium concentration with a maximum adsorption capacity of 123.46 mg/g. This indicated a monolayer adsorption pattern for Pb2+ ions over MGO@LaS. The pseudo-second-order as the kinetic model was best fitted to describe the adsorption rate due to high R2 > 0.999 as compared first-order. A thermodynamic model suggested a chemisorption and physisorption adsorption mechanism for Pb2+ ions uptake into MGO@LaS at different temperatures; ΔG° < -5.99 kJ mol-1 at 20 °C and ΔG° -18.2 kJ mol-1 at 45 °C. The obtained results showed that the novel nanocomposite (MGO@LaS) can be used as an alternative adsorbent in wastewater treatment.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Junboum Park
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea
| | - Nicole Nawrot
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Ewa Wojciechowska
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Nouf S S Zaghloul
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1FD, UK
| |
Collapse
|
21
|
Azam M, Wabaidur SM, Khan MR, Al-Resayes SI, Islam MS. Heavy Metal Ions Removal from Aqueous Solutions by Treated Ajwa Date Pits: Kinetic, Isotherm, and Thermodynamic Approach. Polymers (Basel) 2022; 14:914. [PMID: 35267737 PMCID: PMC8912624 DOI: 10.3390/polym14050914] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
In the current study we prepared cost-effective adsorbents based on ajwa date pits to remove Cu(II) ions from aqueous medium. Adsorbents were studied using scanning electron microscopy (SEM), FT-IR, and Brunauer-Emmett-Teller (BET) methods to characterize the surface functionalities, morphology, pore size, and particle size. The concentration of Cu(II) ions in the studied samples was determined by atomic adsorption spectrometry technique (AAS). Adsorption method was performed sequentially in a batch system followed by optimization by studying the numerous conditions, for instance the initial amounts of Cu(II) ions, dosages of the adsorbent, contact time, and pH of the solution. The ideal pH observed for maximum adsorption capacity was ~6.5. Langmuir and Freundlich isotherm models correctly predicted the investigation results, with the maximum monolayer adsorption capacities for Cu(II) ions at 328 K being 1428.57 mg/g (treated ajwa date pits, TADP) and 1111.1 mg/g for as produced ajwa date pits (ADP). It was revealed that TADP possess greater adsorption capability than ADP. Recovery investigations revealed that the saturated adsorbents eluted the maximum metal with 0.1 M HCl. Cu(II) ions adsorption was observed to be reduced by 80-89% after the second regeneration cycle. For the raw and chemically processed ajwa date pits adsorbent, the Langmuir model performed significantly better than the Freundlich model. The results demonstrated that the adsorbent made from ajwa date pits could be an economical and environmentally friendly alternative for removing Cu(II) ion pollutant from aqueous media.
Collapse
Affiliation(s)
- Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.M.W.); (M.R.K.); (S.I.A.-R.); (M.S.I.)
| | | | | | | | | |
Collapse
|
22
|
Mallik AK, Moktadir MA, Rahman MA, Shahruzzaman M, Rahman MM. Progress in surface-modified silicas for Cr(VI) adsorption: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127041. [PMID: 34488103 DOI: 10.1016/j.jhazmat.2021.127041] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Various toxic chemicals are discharging to the environment due to rapid industrialization and polluting soil, water, and air causing numerous diseases including life-threatening cancer. Among these pollutants, Cr(VI) or hexavalent chromium is one of the most carcinogenic and toxic contaminants hostile to human health and other living things. Therefore, along with other contaminants, the removal of Cr(VI) efficiently is very crucial to keep our environment neat and clean. On the other hand, silica has a lot of room to modify its surfaces as it is available with various sizes, shapes, pore sizes, surface areas etc. and the surface silanol groups are susceptible to design and prepare adsorbents for Cr(VI). This review emphases on the progress in the development of different types of silica-based adsorbents by modifying the surfaces of silica and their application for the removal of Cr(VI) from wastewater. Toxicity of Cr(VI), different silica surface modification processes, and removal techniques are also highlighted. The adsorption capacities of the surface-modified silica materials with other parameters are discussed extensively to understand how to select the best condition, silica and modifiers to achieve optimum removal performance. The adsorption mechanisms of various adsorbents are also discussed. Finally, future prospects are summarized and some suggestions are given to enhance the adsorption capacities of the surface-modified silica materials.
Collapse
Affiliation(s)
- Abul K Mallik
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Md Abdul Moktadir
- Institute of Leather Engineering and Technology, University of Dhaka, Dhaka 1209, Bangladesh.
| | - Md Ashiqur Rahman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Md Shahruzzaman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Mohammed Mizanur Rahman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh; Institute of Leather Engineering and Technology, University of Dhaka, Dhaka 1209, Bangladesh.
| |
Collapse
|
23
|
Wang Y, Cai M, Chen T, Pan F, Wu F, You Z, Li J. Oxide of porous graphitized carbon as recoverable functional adsorbent that removes toxic metals from water. J Colloid Interface Sci 2022; 606:983-993. [PMID: 34487945 DOI: 10.1016/j.jcis.2021.08.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022]
Abstract
The numerous oxygenated functional groups on graphite oxide (GO) make it a promising adsorbent for toxic heavy metals in water. However, the GO prepared from natural graphite is water-soluble after exfoliation, making its recovery for reuse extremely difficult. In this study, porous graphitized carbon (PGC) was oxidized to fabricate a GO-like material, PGCO. The PGCO showed an O/C molar ratio of 0.63, and 8.4% of the surface carbon species were carboxyl, exhibiting enhanced oxidation degree compared to GO. The small PGCO sheets were intensely aggregated chemically, yielding an insoluble solid easily separable from water by sedimentation or filtration. Batch adsorption experiments demonstrated that the PGCO afforded significantly higher removal efficiencies for heavy metals than GO, owing to the former's greater functionalization with oxygenated groups. An isotherm study suggested that the adsorption obeyed the Langmuir model, and the derived maximum adsorption capacities for Cr3+, Pb2+, Cu2+, Cd2+, Zn2+, and Ni2+ were 119.6, 377.1, 99.1, 65.2, 53.0, and 58.1 mg/g, respectively. Furthermore, the spent PGCO was successively regenerated by acid treatment. The results of the study indicate that PGCO could be an alternative adsorbent for remediating toxic metal-contaminated waters.
Collapse
Affiliation(s)
- Yuan Wang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Minjuan Cai
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Tao Chen
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Feng Pan
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Feng Wu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Zhixiong You
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Jinjun Li
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
24
|
Wang R, Fan XW, Li YZ. Efficient removal of a low concentration of Pb(II), Fe(III) and Cu(II) from simulated drinking water by co-immobilization between low-dosages of metal-resistant/adapted fungus Penicillium janthinillum and graphene oxide and activated carbon. CHEMOSPHERE 2022; 286:131591. [PMID: 34303053 DOI: 10.1016/j.chemosphere.2021.131591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Drinking water safety cannot be overemphasized. Filamentous fungi have many excellent features for metal removal. Both graphene oxide (GO) and activated carbon (AC) are conventional metal adsorbents, but they are not suitable for large-scale use due to high cost. In this study, a low dosage of conidia (2.0 × 104 conidia/mL) of metal-resistant/adapted filamentous fungus Penicillium janthinillum strain GXCR were co-immobilized with a low dosage of 0.5 mg/L GO or 0.5 mg/L AC by embedding in 2% polyvinyl alcohol (PVA)-3% sodium alginate (SA), generating six types of microbead adsorbents (MBAs) to remove metals from a low concentration of either single metal (100 mg/L) or mixed metals (100 mg/L each) of Pb (II), Fe (III) and Cu (II) in drinking water. Fungus GXCR-containing MBAs had higher specific surface areas (SSAs), better mesoporous structures, and a higher removal rate (85-98.99%) of single or mixed metals. Singl-metal adsorptions of MBAs were almost unaffected by temperature changes. MBAs showed a stable removal rate of 87-94% during four cycles of adsorption-desorption of single metal. Single-metal adsorptions were well described by multiple models of Freundlich isotherm with constant values of 0.21-0.432, Langmuir isotherm with constant values of 0.037-0.17, Pseudo-fist-order, Pseudo-second-order, and intra-particle diffusion (IPD). In conclusion, co-immobilization between GXCR, GO and AC can make metal removal more efficient. Adsorption capacity is increased with SSAs but not in the same proportion. Single-metal adsorptions involve multiple mechanisms of monolayer and multilayer adsorptions, external mass transfer, and IPD. IPD is important but not the only one rate-controlling step for single-metal adsorptions.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
25
|
Wu S, Ji X, Li X, Ye J, Xu W, Wang R, Hou M. Mutual impacts and interactions of antibiotic resistance genes, microcystin synthetase genes, graphene oxide, and Microcystis aeruginosa in synthetic wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3994-4007. [PMID: 34402007 DOI: 10.1007/s11356-021-15627-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The physiological impacts and interactions of antibiotic resistance gene (ARG) abundance, microcystin synthetase gene expression, graphene oxide (GO), and Microcystis aeruginosa in synthetic wastewater were investigated. The results demonstrated that the absolute abundance of sul1, sul2, tetW, and tetM in synthetic wastewater dramatically increased to 365.2%, 427.1%, 375.2%, and 231.7%, respectively, when the GO concentration was 0.01 mg/L. Even more interesting is that the sum gene copy numbers of mcyA-J also increased to 243.2%. The appearance of GO made the significant correlation exist between ARGs abundance and mcyA-J expression. Furthermore, M. aeruginosa displayed better photosynthetic performance and more MCs production at 0.01 mg/L GO. There were 65 pairs of positive correlations between the intracellular differential metabolites of M. aeruginosa and the abundance of sul1, sul2, tetM, and tetW with various GO concentrations. The GO will impact the metabolites and metabolic pathway in M. aeruginosa. The metabolic changes impacted the ARGs, microcystin synthetase genes, and physiological characters in algal cells. Furthermore, there were complex correlations among sul1, sul2, tetM, tetW, mcyA-J, MCs, photosynthetic performance parameters, and ROS. The different concentration of GO will aggravate the hazards of M. aeruginosa by promoting the expression of mcyA-J, producing more MCs; simultaneously, it may cause the spread of ARGs.
Collapse
Affiliation(s)
- Shichao Wu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Xiyan Ji
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| | - Xin Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Wenwu Xu
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Rui Wang
- Shanghai Luming Biological Technology Co. Ltd, Shanghai, 201114, People's Republic of China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
26
|
Wang S, Lao W, He Y, Shi H, Ye Q, Ma J. Promoting the stability and adsorptive capacity of Fe 3O 4-embedded expanded graphite with an aminopropyltriethoxysilane-polydopamine coating for the removal of copper(ii) from water. RSC Adv 2021; 11:35673-35686. [PMID: 35493170 PMCID: PMC9043260 DOI: 10.1039/d1ra05160a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023] Open
Abstract
In this study, three magnetic graphites, namely, EGF, GAF, and GFA + KH550, were prepared, which were loaded either with Fe3O4 or with Fe3O4 and PDA or with Fe3O4, PDA, and KH550 onto expanded graphite. ATR-FTIR, XRD, XPS, SEM, TEM, and TGA characterization results showed that EGF, GAF, and GFA + KH550 were successfully prepared. Under the same initial copper concentration, the removal rates of copper ions by EGF, GFA, and GFA + KH550 were 86.2%, 96.9%, and 97.0%, respectively and the hazard index reductions of the three adsorbents were 2191 ± 71 (EGF), 1843 ± 68 (GFA), and 1664 ± 102 (GFA + KH550), respectively. Therefore GFA + KH550 exhibited better removal of Cu(ii) than EGF and GFA, for PDA and KH550 provided more adsorption-active sites like –OH and –NH. Here, the adsorption of GFA + KH550 fitted the pseudo-second-order kinetic and Langmuir models well within the testing range, which means that adsorption occurs on a monolayer surface between Cu(ii) and the adsorption sites. The intraparticle diffusion model and various thermodynamic parameters demonstrated that Cu(ii) was adsorbed on GFA + KH550 mainly via external surface diffusion and that the process was both endothermic and spontaneous. Recycling experiments show that GFA + KH550 has a satisfactory recyclability, and the way of direct recovery by magnets exhibits good magnetic induction. GFA + KH550 was applied in lake water and artificial seawater samples, and exhibited better removal of copper than that in DI water under the same environmental conditions for the existence of macromolecular organic matter. Furthermore, the adsorption capacity of copper ions was not relative to the salinity of water. The application of GFA + KH550 demonstrated the potential for application in water treatment procedures. In this study, three magnetic graphites, namely, EGF, GAF, and GFA + KH550, were prepared, which were loaded either with Fe3O4 or with Fe3O4 and PDA or with Fe3O4, PDA, and KH550 onto expanded graphite.![]()
Collapse
Affiliation(s)
- Shunhui Wang
- School of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University Chengdu 610500 China +86 28 83037367
| | - Wenjian Lao
- Southern California Coastal Water Research Project Authority Costa Mesa California 92626 USA
| | - Yi He
- School of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University Chengdu 610500 China +86 28 83037367.,State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Chengdu Sichuan 610500 China
| | - Heng Shi
- School of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University Chengdu 610500 China +86 28 83037367
| | - Qihang Ye
- School of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University Chengdu 610500 China +86 28 83037367
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University Chengdu 610500 China +86 28 83037367
| |
Collapse
|
27
|
Liu Y, Li Y, Yuan X, Ren R, Lv Y. A self-prepared graphene oxide/sodium alginate aerogel as biological carrier to improve the performance of a heterotrophic nitrifier. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Graphene-Based Materials Immobilized within Chitosan: Applications as Adsorbents for the Removal of Aquatic Pollutants. MATERIALS 2021; 14:ma14133655. [PMID: 34209007 PMCID: PMC8269710 DOI: 10.3390/ma14133655] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
Graphene and its derivatives, especially graphene oxide (GO), are attracting considerable interest in the fabrication of new adsorbents that have the potential to remove various pollutants that have escaped into the aquatic environment. Herein, the development of GO/chitosan (GO/CS) composites as adsorbent materials is described and reviewed. This combination is interesting as the addition of graphene to chitosan enhances its mechanical properties, while the chitosan hydrogel serves as an immobilization matrix for graphene. Following a brief description of both graphene and chitosan as independent adsorbent materials, the emerging GO/CS composites are introduced. The additional materials that have been added to the GO/CS composites, including magnetic iron oxides, chelating agents, cyclodextrins, additional adsorbents and polymeric blends, are then described and discussed. The performance of these materials in the removal of heavy metal ions, dyes and other organic molecules are discussed followed by the introduction of strategies employed in the regeneration of the GO/CS adsorbents. It is clear that, while some challenges exist, including cost, regeneration and selectivity in the adsorption process, the GO/CS composites are emerging as promising adsorbent materials.
Collapse
|
29
|
Anchique L, Alcázar JJ, Ramos-Hernandez A, Méndez-López M, Mora JR, Rangel N, Paz JL, Márquez E. Predicting the Adsorption of Amoxicillin and Ibuprofen on Chitosan and Graphene Oxide Materials: A Density Functional Theory Study. Polymers (Basel) 2021; 13:1620. [PMID: 34067695 PMCID: PMC8156938 DOI: 10.3390/polym13101620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
The occurrence, persistence, and accumulation of antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs) represent a new environmental problem due to their harmful effects on human and aquatic life. A suitable absorbent for a particular type of pollutant does not necessarily absorb other types of compounds, so knowing the compatibility between a particular pollutant and a potential absorbent before experimentation seems to be fundamental. In this work, the molecular interactions between some pharmaceuticals (amoxicillin, ibuprofen, and tetracycline derivatives) with two potential absorbers, chitosan and graphene oxide models (pyrene, GO-1, and coronene, GO-2), were studied using the ωB97X-D/6-311G(2d,p) level of theory. The energetic interaction order found was amoxicillin/chitosan > amoxicillin/GO-1 > amoxicillin/GO-2 > ibuprofen/chitosan > ibuprofen/GO-2 > ibuprofen/GO-1, the negative sign for the interaction energy in all complex formations confirms good compatibility, while the size of Eint between 24-34 kcal/mol indicates physisorption processes. Moreover, the free energies of complex formation were negative, confirming the spontaneity of the processes. The larger interaction of amoxicillin Gos, compared to ibuprofen Gos, is consistent with previously reported experimental results, demonstrating the exceptional predictability of these methods. The second-order perturbation theory analysis shows that the amoxicillin complexes are mainly driven by hydrogen bonds, while van der Waals interactions with chitosan and hydrophobic interactions with graphene oxides are modelled for the ibuprofen complexes. Energy decomposition analysis (EDA) shows that electrostatic energy is a major contributor to the stabilization energy in all cases. The results obtained in this work promote the use of graphene oxides and chitosan as potential adsorbents for the removal of these emerging pollutants from water.
Collapse
Affiliation(s)
- Leonardo Anchique
- Programa de Química, Grupo Química Supramolecular Aplicada, Facultad de Ciencias Básicas, Semillero Electroquímica Aplicada, Universidad del Atlántico, Barranquilla 081001, Colombia; (L.A.); (A.R.-H.)
| | - Jackson J. Alcázar
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile;
| | - Andrea Ramos-Hernandez
- Programa de Química, Grupo Química Supramolecular Aplicada, Facultad de Ciencias Básicas, Semillero Electroquímica Aplicada, Universidad del Atlántico, Barranquilla 081001, Colombia; (L.A.); (A.R.-H.)
| | - Maximiliano Méndez-López
- Departamento de Química y Biología, Facultad de Ciencias Exactas, Grupo de Investigaciones en Química y Biología, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia
| | - José R. Mora
- Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles y Vía Interoceánica, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Norma Rangel
- TecNM/Instituto Tecnológico de Aguascalientes-División de Estudios de Posgrado e Investigación, Ave. Adolfo López Mateos #1801Ote. Fracc. Bona Gens, Aguascalientes 20256, Mexico;
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Cercado de Lima 15081, Peru;
| | - Edgar Márquez
- Departamento de Química y Biología, Facultad de Ciencias Exactas, Grupo de Investigaciones en Química y Biología, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia
| |
Collapse
|
30
|
Cataldo S, Lo Meo P, Conte P, Di Vincenzo A, Milea D, Pettignano A. Evaluation of adsorption ability of cyclodextrin-calixarene nanosponges towards Pb 2+ ion in aqueous solution. Carbohydr Polym 2021; 267:118151. [PMID: 34119126 DOI: 10.1016/j.carbpol.2021.118151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 01/13/2023]
Abstract
Different cyclodextrin-calixarene nanosponges (CyCaNSs) have been characterized by means of FFC-NMR relaxometry, and used as sorbents to remove Pb2+ ions from aqueous solutions. Considering that the removal treatments may involve polluted waters with different characteristics, the adsorption experiments were performed on solutions without and with the addition of background salts, under different operational conditions. The adsorption abilities and affinities of the nanosponges towards Pb2+ ions were investigated by measuring the metal ion concentration by means of Inductively Coupled Plasma Emission Spectroscopy (ICP-OES) and Differential Pulse Anodic Stripping Voltammetry (DP-ASV). The acid-base properties of nanosponges and of metal ion as well as their interactions with the other interacting components of the systems have been considered in the evaluation of adsorption mechanism. Recycling and reuse experiments on the most efficient adsorbents were also performed. On the grounds of the results obtained, post-modified CyCaNSs appear promising materials for designing environmental remediation devices.
Collapse
Affiliation(s)
- Salvatore Cataldo
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze ed. 17, 90128 Palermo, Italy
| | - Paolo Lo Meo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
| | - Pellegrino Conte
- Dipartimento di Scienze Agrarie, Alimentari e Forestali (SAAF), Università di Palermo, V.le delle Scienze, ed. 4, 90128 Palermo, Italy
| | - Antonella Di Vincenzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy
| | - Demetrio Milea
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Universita degli Studi di Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Alberto Pettignano
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze ed. 17, 90128 Palermo, Italy.
| |
Collapse
|
31
|
Ferrofluids-based microextraction systems to process organic and inorganic targets: The state-of-the-art advances and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Soltani R, Pelalak R, Pishnamazi M, Marjani A, Sarkar SM, Albadarin AB, Shirazian S. Novel bimodal micro‐mesoporous Ni50Co50-LDH/UiO-66-NH2 nanocomposite for Tl(I) adsorption. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Development of Green and Sustainable Cellulose Acetate/Graphene Oxide Nanocomposite Films as Efficient Adsorbents for Wastewater Treatment. Polymers (Basel) 2020; 12:polym12112501. [PMID: 33121200 PMCID: PMC7693400 DOI: 10.3390/polym12112501] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/26/2022] Open
Abstract
: Novel ecofriendly adsorbents, cellulose acetate/graphene oxide (CA-GO) nanocomposite, were prepared from sugarcane bagasse agro-waste for removing Ni2+ ions from wastewater. Graphene oxide (GO) was prepared by the oxidation of sugarcane bagasse using ferrocene under air atmosphere. Cellulose acetate (CA) was also prepared from sugarcane bagasse by extraction of cellulose through a successive treatments with sulfuric acid (10% v/v), sodium hydroxide (5% w/v), ethylenediaminetetraacetic acid, and hydrogen peroxide, and finally , followed by acetylation. CA-GO was prepared via mixing of GO and CA in the presence of calcium carbonate and different concentrations of GO, including 5, 10, 15, 20, 25, and 30 wt% relative to the weight of CA. The CA-GO nanocomposite showed porous microstructures with high surface area, which enhance their ability towars the adsorption of Ni2+ ions from wastewater. The morphological properties of the prepared adsorbents were explored by scanning electron microscope (SEM) and Fourier-transform infrared spectroscopy (FT-IR). The efficiency of the CA-GO towards the adsorption of Ni2+ ions from wastewater was explored against as time, temperature, and total content of Ni2+ ions. The adsorption measurements of Ni2+ ions were investigated within the concentration range of 10-40 mg/L, time range between 15 and 90 minutes, and temperature range between 25 °C and 55 °C. The results displayed a considerable improvement in the adsorption process of Ni2+ ions by CA-GO-2 with a removal efficiency of 96.77%. The isotherms were monitored to best fit the Langmuir model. Finally, the adsorption performance of the prepared CA-GO nanocomposite films demonstrated promising properties as green, sustainable and cheap adsorbents for water pollutants.
Collapse
|
34
|
Sall ML, Diaw AKD, Gningue-Sall D, Efremova Aaron S, Aaron JJ. Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29927-29942. [PMID: 32506411 DOI: 10.1007/s11356-020-09354-3] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/18/2020] [Indexed: 04/16/2023]
Abstract
Water pollution by heavy metals has many human origins, such as the burning of fossil fuels, exhaust gases of vehicles, mining, agriculture, and incineration of solid and liquid wastes. Heavy metals also occur naturally, due to volcanoes, thermal springs activity, erosion, infiltration, etc. This water contamination is a threat for living beings because most heavy metals are toxic to humans and to aquatic life. Hence, it is important to find effective techniques for removing these contaminants in order to reduce the level of pollution of the natural waters. In this work, we have reviewed the toxicity of several heavy metals (mercury, lead, cadmium, chromium, nickel), their impact on the environment and human health, and the synthesis and characterization methods of conducting organic polymers (COPs) utilized for the removal of heavy metals from the environment. Therefore, this review was essentially aimed to present recent works and methods (2000-2020) on the environmental impact and toxicity of heavy metals and on the removal of toxic heavy metals, using chemically and/or electrochemically synthesized COPs. We have also stressed the great interest of COPs for the removal of toxic heavy metals from waters.
Collapse
Affiliation(s)
- Mohamed Lamine Sall
- Laboratoire de Chimie Physique Organique et d'Analyse Environementale (LCPOAE), Département de Chimie, Université Cheikh Anta Diop, BP 5005, Dakar-Fann, Senegal
- Laboratoire Géomatériaux et Environnement (LGE), Université Paris-Est, 5 Boulevard Descartes, Champs-sur-Marne, 77454, Marne la Vallée Cedex 2, France
| | - Abdou Karim Diagne Diaw
- Laboratoire de Chimie Physique Organique et d'Analyse Environementale (LCPOAE), Département de Chimie, Université Cheikh Anta Diop, BP 5005, Dakar-Fann, Senegal
| | - Diariatou Gningue-Sall
- Laboratoire de Chimie Physique Organique et d'Analyse Environementale (LCPOAE), Département de Chimie, Université Cheikh Anta Diop, BP 5005, Dakar-Fann, Senegal
| | - Snezana Efremova Aaron
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril & Methodius University, Skopje, North Macedonia
| | - Jean-Jacques Aaron
- Laboratoire Géomatériaux et Environnement (LGE), Université Paris-Est, 5 Boulevard Descartes, Champs-sur-Marne, 77454, Marne la Vallée Cedex 2, France.
| |
Collapse
|
35
|
Bessa A, Gonçalves G, Henriques B, Domingues EM, Pereira E, Marques PAAP. Green Graphene-Chitosan Sorbent Materials for Mercury Water Remediation. NANOMATERIALS 2020; 10:nano10081474. [PMID: 32731383 PMCID: PMC7466593 DOI: 10.3390/nano10081474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
The development of new graphene-based nanocomposites able to provide synergistic effects for the adsorption of toxic heavy metals in realistic conditions (environment) is of higher demand for future applications. This work explores the preparation of a green nanocomposite based on the self-assembly of graphene oxide (GO) with chitosan (CH) for the remediation of Hg(II) in different water matrices, including ultrapure and natural waters (tap water, river water, and seawater). Starting at a concentration of 50 μg L-1, the results showed that GO-CH nanocomposite has an excellent adsorption capacity of Hg (II) using very small doses (10 mg L-1) in ultrapure water with a removal percentage (% R) of 97 % R after only two hours of contact time. In the case of tap water, the % R was 81.4% after four hours of contact time. In the case of river and seawater, the GO-CH nanocomposite showed a limited performance due the high complexity of the water matrices, leading to a residual removal of Hg(II). The obtained removal of Hg(II) at equilibrium in river and seawater for GO-CH was 13% R and 7% R, respectively. Our studies conducted with different mimicked sea waters revealed that the removal of mercury is not affected by the presence of NO3- and Na+ (>90% R of Hg(II)); however, in the presence of Cl-, the mercury removal was virtually nonexistent (1% R of Hg(II)), most likely because of the formation of very stable chloro-complexes of Hg(II) with less affinity towards GO-CH.
Collapse
Affiliation(s)
- Ana Bessa
- Centro de Tecnologia Mecânica e Automação (TEMA), Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (G.G.); (E.M.D.)
- Centro de Estudos do Ambiente e do Mar (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Gil Gonçalves
- Centro de Tecnologia Mecânica e Automação (TEMA), Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (G.G.); (E.M.D.)
| | - Bruno Henriques
- Centro de Estudos do Ambiente e do Mar (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV-REQUIMTE) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Eddy M. Domingues
- Centro de Tecnologia Mecânica e Automação (TEMA), Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (G.G.); (E.M.D.)
| | - Eduarda Pereira
- Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV-REQUIMTE) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Paula A. A. P. Marques
- Centro de Tecnologia Mecânica e Automação (TEMA), Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (G.G.); (E.M.D.)
- Correspondence:
| |
Collapse
|
36
|
Abstract
The proline-catalysed asymmetric aldol reaction is usually carried out in highly dipolar aprotic solvents (dimethylsulfoxide, dimethylformamide, acetonitrile) where proline presents an acceptable solubility. Protic solvents are generally characterized by poor stereocontrol (e.g., methanol) or poor reactivity (e.g., water). Here, we report that water/methanol mixtures are exceptionally simple and effective reaction media for the intermolecular organocatalytic aldol reaction using the simple proline as the catalyst.
Collapse
|