1
|
Guo M, Li Y, Niu S, Zhang R, Shen X, Ma Y, Wu L, Wu T, Zhang T, Tang M, Xue Y. Oxidative stress-activated Nrf2 remitted polystyrene nanoplastic-induced mitochondrial damage and inflammatory response in HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104385. [PMID: 38340909 DOI: 10.1016/j.etap.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Generated from plastics, microplastics (MPs) and nanoplastics (NPs) are difficult to completely degrade in the natural environment, which can accumulate in almost all lives. Liver is one of the main target organs. In this study, HepG2 and L02 cells were exposed to 0-50 μg/mL polystyrene (PS)-NPs to investigate the mechanism of mitochondrial damage and inflammation. The results showed mitochondria damage and inflammatory caused by NPs, and it can be inhibited by N-acetyl-L-cysteine (NAC). In addition, reactive oxygen species (ROS) activated nuclear factor erythroid-derived factor 2-related factor (Nrf2) pathway. Nrf2 siRNA exacerbated the injury, suggesting Nrf2 plays a protective role. Moreover, p62 siRNA increased ROS and mitochondrial damage by inhibiting Nrf2, but didn't affect the inflammation. In conclusion, Nrf2 was activated by ROS and played a protective role in PS-NPs-mediated hepatotoxicity. This study supplemented the data of liver injury caused by PS-NPs, providing a basis for the safe disposal of plastics.
Collapse
Affiliation(s)
- Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yunjing Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China; Jinan Center For Disease Control and Prevention, People's Republic of China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Rui Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xin Shen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yu Ma
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Liqing Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
2
|
Shi X, Xu W, Che X, Cui J, Shang X, Teng X, Jia Z. Effect of arsenic stress on the intestinal structural integrity and intestinal flora abundance of Cyprinus carpio. Front Microbiol 2023; 14:1179397. [PMID: 37168116 PMCID: PMC10165157 DOI: 10.3389/fmicb.2023.1179397] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
Aquatic organisms such as fish can accumulate high concentrations of arsenic (As), which has toxic effects on fish. However, whether the intestinal flora are involved in As damage to fish intestinal tissues and the underlying process are unclear. Common carp (Cyprinus carpio) were exposed to As (2.83 mg/L) in water for 30 days, and blood, muscle, intestine, and intestine samples were collected. Intestinal pathological sections were observed, and the lipopolysaccharide (LPS) levels in serum and the levels of As accumulation and tight junction-related factors in intestinal tissues were measured. The gut microbiota was analysed by 16S rRNA sequencing. The results showed that As treatment decreased the abundance of microbiota, increased the number of harmful bacteria, and decreased the number of beneficial bacteria in the intestine. In our experiment, the top 30 harmful and beneficial bacteria with the highest relative abundance were identified. Among the top 30 harmful and beneficial bacteria, As treatment resulted in a significant (P < 0.05) increase in harmful bacteria (such as Fusobacteriota, Bacteroidota (LPS-producing bacteria), Verrucomicrobiota, Bacteroides, Aeromonas, and Stenotrophomonas) and a significant (P < 0.05) decrease in beneficial bacteria (such as Actinobacteriota, Planctomycetota, Firmicutes, Reyranella, Akkermansia, and Pseudorhodobacter), which further demonstrated that As affects the abundance of intestinal flora. In addition, As exposure increased the LPS level in serum and the abundance of Bacteroidota (LPS-producing bacteria) in the intestine. Bacteroidota exhibits the six highest relative abundance at the phylum level, which indicates that LPS produced by Bacteroidota can increase the LPS level in serum. Additionally, the protein and gene levels of the tight junction markers ZO-1 and occludin in the intestine were reduced by As treatment, which further indicated that As exposure impaired the structural integrity of the intestine. In conclusion, the results obtained in our study indicate that the intestinal flora, LPS, and tight junctions participate in the impairment of the structural integrity of the common carp intestine resulting from As exposure.
Collapse
Affiliation(s)
- Xiaodan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xinghua Che
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Xiaohua Teng,
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- *Correspondence: Zhiying Jia,
| |
Collapse
|
3
|
Guo M, Wang Y, Zhao H, Wang D, Yin K, Liu Y, Li B, Xing M. Zinc antagonizes common carp (Cyprinus carpio) intestinal arsenic poisoning through PI3K/AKT/mTOR signaling cascade and MAPK pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105986. [PMID: 34638088 DOI: 10.1016/j.aquatox.2021.105986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) pollution is a serious and longstanding problem, which has obvious threaten to aquatic organisms. The study aimed to explore the mitigation effect of natural antioxidant zinc (Zn) on As toxicity in the foregut and midgut of common carp (Cyprinus carpio L.), and in-depth disclose related signal cascade. Carps were treated with Zn2+ (1 mg/L) and/or As3+ (2.83 mg/L) for a period of 30 days. Under As exposure, the foregut and midgut showed obvious burst of reactive oxygen species (ROS) and breakdown of antioxidant system. What followed is the activation of the endogenous and exogenous apoptotic pathways, and the rise of autophagy level prompted by the increase in LC3 II and the down-regulation of p62. Mitochondrial swelling, cristae fragmentation and autophagosomes were observed under the electron microscope, which also means the occurrence of apoptosis and autophagy. In addition, As induced the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and the inhibition of extracellular signal-related kinase (ERK) in MAPK signaling, and up-regulated the level of autophagy through the inhibition of the phosphatidylinositol 3 kinase (PI3K)/AKT/ mammalian target of rapamycin (mTOR) signaling cascade. However, Zn supplementation has clearly reversed the above phenomenon, and it basically has no effect on foregut and midgut. In conclusion, this study shows that Zn can alleviate the damage caused by subchronic As exposure, which provides a reference for the use of Zn preparations in aquaculture.
Collapse
Affiliation(s)
- Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Baoying Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
4
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
5
|
Njemini R, Verhaeghen K, Mets T, Weets I, Bautmans I. A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70. Pathogens 2020; 9:pathogens9110863. [PMID: 33105839 PMCID: PMC7690633 DOI: 10.3390/pathogens9110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Heat shock proteins (HSPs) play an essential role in protecting proteins from denaturation and are implicated in diverse pathophysiological conditions like cardiovascular diseases, cancer, infections, and neurodegenerative diseases. Scientific evidence indicates that if HSP expression falls below a certain level, cells become sensitive to oxidative damage that accelerates protein aggregation diseases. On the other hand, persistently enhanced levels of HSP can lead to inflammatory and oncogenic changes. To date, although techniques for measuring HSPs exist, these assays are limited for use in specific sample types or are time consuming. Therefore, in the present study, we developed a single-molecule assay digital ELISA technology (Single Molecule Array—SIMOA) for the measurement of HSPs, which is time effective and can be adapted to measure multiple analytes simultaneously from a single sample. This technique combines two distinct HSP-specific antibodies that recognize different epitopes on the HSP molecule. A recombinant human HSP protein was used as the standard material. The assay performance characteristics were evaluated by repeated testing of samples spiked with HSP peptide at different levels. The limit of detection was 0.16 and 2 ng/mL for HSP27 and HSP70, respectively. The inter- and intra-assay coefficients of variation were less than 20% in all tested conditions for both HSPs. The HSP levels assayed after serial dilution of samples portrayed dilutional linearity (on average 109%, R2 = 0.998, p < 0.001, for HSP27 and 93%, R2 = 0.994, p < 0.001, for HSP70). A high linear response was also demonstrated with admixtures of plasma exhibiting relatively very low and high levels of HSP70 (R2 = 0.982, p < 0.001). Analyte spike recovery varied between 57% and 95%. Moreover, the relative HSP values obtained using Western blotting correlated significantly with HSP values obtained with the newly developed SIMOA assay (r = 0.815, p < 0.001 and r = 0.895, p < 0.001 for HSP70 and HSP27, respectively), indicating that our method is reliable. In conclusion, the assay demonstrates analytical performance for the accurate assessment of HSPs in various sample types and offers the advantage of a huge range of dilution linearity, indicating that samples with HSP concentration highly above the calibration range can be diluted into range without affecting the precision of the assay.
Collapse
Affiliation(s)
- Rose Njemini
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-477-42-41; Fax: +32-2-477-63-64
| | - Katrijn Verhaeghen
- Laboratory of Clinical Chemistry and Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium; (K.V.); (I.W.)
| | - Tony Mets
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Geriatric Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
| | - Ilse Weets
- Laboratory of Clinical Chemistry and Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium; (K.V.); (I.W.)
| | - Ivan Bautmans
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Geriatric Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
| |
Collapse
|
6
|
Guo M, Wang Y, Zhao H, Mu M, Yang X, Fei D, Liu Y, Zong H, Xing M. Oxidative damage under As 3+ and/or Cu 2+ stress leads to apoptosis and autophagy and may be cross-talking with mitochondrial disorders in bursa of Fabricius. J Inorg Biochem 2020; 205:110989. [PMID: 31945648 DOI: 10.1016/j.jinorgbio.2019.110989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022]
Abstract
Arsenic (As) exists in many forms in the whole natural environment, with As3+ the highest toxicity. Herein our study demonstrated that arsenic trioxide (As2O3) at a dose of 30 mg/kg caused serious oxidative damage to chickens' bursa of Fabricius (BF) in a time-dependent manner. Copper (Cu) is a necessary micronutrient and a key catalytic cofactor of many enzymes. We found excessive Cu (in the form of 300 mg/kg copper sulfate (CuSO4)) also induced severe oxidative stress (OxS), and its co-exposure with As3+ had a greater destructive power against oxidative system. Under electron microscope, swollen mitochondria, disappeared cristae and agglutinated chromatin were observed, accompanied by myeloid structure and autophagosome. The results showed apoptosis and autophagy occurred under the action of As3+ and Cu2+, and the situation was more serious in combined exposure group, which was further explained by terminal deoxynucleotidyl transferase (TdT)-mediated 2'-Deoxyuridine 5'-Triphosphate (dUTP) Nick-End Labeling (TUNEL). By quantitative real time polymerase chain reaction (RT-qPCR) and western blot, we found that mitochondrial dynamics were disordered under OxS, and the abnormal changes of B-cell lymphoma (Bcl)-2, p53, Bcl-2-interacting protein (Beclin)-1 and autophagy-related gene (ATG) 4B indicated the crosstalk between apoptosis and autophagy. In conclusion, apoptosis and autophagy of BF induced by As3+ and Cu2+ and mitochondrial disorder are closely related to the collapse of antioxidant system, and their connections are inseparable. Our results provide a reference for environmental risk prevention and selection of poultry feed additives and pesticides to avoid the health risks caused by As3+ and Cu2+ exposure.
Collapse
Affiliation(s)
- Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xin Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxue Fei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hui Zong
- Guangdong Polytechnic of Science and Trade, Guangzhou 510000, Guangdong, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|