1
|
Huang F, Tian Z, Wang Y, Ji X, Wang D, Fatehi P. Cellulose fiber drainage improvement via citric acid crosslinking. Int J Biol Macromol 2024; 281:136338. [PMID: 39374719 DOI: 10.1016/j.ijbiomac.2024.136338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Wheat straw, as a non-wood fiber waste, is available worldwide and can be used in cellulosic matric production, promoting the application of sustainable materials. However, poor fiber properties and water drainage are the primary obstacles to its utilization. In this study, wheat straw pulp fibers were chemically crosslinked by citric acid (CA) in an environmentally friendly process. X-ray photoelectron spectroscopy and Fourier transform infrared spectra confirmed that the chemical treatment introduced carboxylic groups to cellulose fibers. Meanwhile, X-ray diffraction patterns showed that the crystallinity of cellulose was reduced. The average fiber length and water retention value of the pulp decreased with increasing CA dosage under the conditions of 3 mL/g CA4 (4 wt% CA), and the drainage performance of the cellulose pulp improved by 21 %. Also, the crosslinking of fibers contributed to the mechanical properties of the cellulosic matrix, increasing the dry and wet strength by 21 % and 282 %, respectively. These results demonstrated that citric acid could be a sustainable method for improving the properties of wheat straw fibers, thereby promoting its application in fabricating sustainable materials.
Collapse
Affiliation(s)
- Fuchun Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Zhongjian Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Yingchao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China; Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China.
| | - Dongxing Wang
- Shandong Century Sunshine Paper Group Co., Ltd., Weifang, Shandong 262400, China
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
2
|
Choudhury SP, Haq I, Kalamdhad AS. Unleashing synergistic potential of microbially enhanced anaerobic co-digestion of petroleum refinery biosludge and yard waste: Impact of nutrient balance and microbial diversity. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132361. [PMID: 37659234 DOI: 10.1016/j.jhazmat.2023.132361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Petroleum refinery sludge, an egregious solid residue generated from the wastewater treatment plants poses an environmental hazard owing to its intricate hydrocarbon composition, necessitating competent treatment for secure disposal. The study proposes a green solution through anaerobic co-digestion of nitrogen-rich petroleum refinery sludge (PS) with carbon-rich yard waste (YW), balancing the nutrients and moisture content for efficient microbial proliferation. Using Central Composite Design-Response Surface Methodology, 1 L batch experiments were conducted with varying carbon/nitrogen (C/N) ratios and pH to achieve maximum biogas yield within 50 days of co-digestion. However, the sluggish biogas recovery (40%) indicated a slow rate-limiting hydrolysis, necessitating pretreatment. Feedstock incubation with Bacillus subtilis IH1 strain, isolated from the microbially-enriched PS, at 108 colony forming units (CFU) per mL for 5 days maximized the soluble chemical oxygen demand and volatile fatty acids by 2.2 and 1.4 folds respectively compared to untreated feedstock. Scale-up Bacillus subtilis aided co-digestion studies further augmented biogas by 76% against untreated monodigestion of PS with significant total petroleum hydrocarbons, emulsions, and lignocellulosic degradation. Further identification of major organic pollutants in the batch digestate revealed significant degradation of the toxic organic hydrocarbon pollutants apotheosizing the efficacy of the synergistic sustainable technique for the management of PS. ENVIRONMENTAL IMPLICATION: The effluent treatment plants (ETPs) of petroleum refining industries generate sludge which is a complex mixture of petroleum hydrocarbons, oil-water (O/W) emulsions and heavy metals. These petroleum hydrocarbon constituents can be linear/cyclic alkanes, polyaromatics, resins and asphaltenes, whose intricate composition is reportedly carcinogenic, cytogenic and mutagenic, classifying it as hazardous waste. Biological treatment of these sludge through anaerobic digestion leads to utilization of petroleum hydrocarbons with subsequent energy recovery. Co-digestion of these sludge with competent co-substrates leads to nutrient balance, diverse microbial proliferation and toxicant dilution. Microbially aided co-digestion further augments methane rendering a digestate with utmost pollutant degradation.
Collapse
Affiliation(s)
- Shinjini Paul Choudhury
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Izharul Haq
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; School of Life and Basic Sciences, Jaipur National University, Jaipur 302017, Rajasthan, India
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Wongleang S, Premjet D, Premjet S. Physicochemical Pretreatment of Vietnamosasa pusilla for Bioethanol and Xylitol Production. Polymers (Basel) 2023; 15:3990. [PMID: 37836039 PMCID: PMC10575274 DOI: 10.3390/polym15193990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The consumption of fossil fuels has resulted in severe environmental consequences, including greenhouse gas emissions and climate change. Therefore, transitioning to alternative energy sources, such as cellulosic ethanol, is a promising strategy for reducing environmental impacts and promoting sustainable low-carbon energy. Vietnamosasa pusilla, an invasive weed, has been recognized as a high potential feedstock for sugar-based biorefineries due to its high total carbohydrate content, including glucan (48.1 ± 0.3%) and xylan (19.2 ± 0.4%). This study aimed to examine the impact of NaOH pretreatment-assisted autoclaving on V. pusilla feedstock. The V. pusilla enzymatic hydrolysate was used as a substrate for bioethanol and xylitol synthesis. After treating the feedstock with varying concentrations of NaOH at different temperatures, the glucose and xylose recovery yields were substantially higher than those of the untreated material. The hydrolysate generated by enzymatic hydrolysis was fermented into bioethanol using Saccharomyces cerevisiae TISTR 5339. The liquid byproduct of ethanol production was utilized by Candida tropicalis TISTR 5171 to generate xylitol. The results of this study indicate that the six- and five-carbon sugars of V. pusilla biomass have great potential for the production of two value-added products (bioethanol and xylitol).
Collapse
Affiliation(s)
- Suwanan Wongleang
- Department of Biology, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand;
| | - Duangporn Premjet
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Muang, Phitsanulok 65000, Thailand
| | - Siripong Premjet
- Department of Biology, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand;
| |
Collapse
|
4
|
Halysh V, Romero-García JM, Vidal AM, Kulik T, Palianytsia B, García M, Castro E. Apricot Seed Shells and Walnut Shells as Unconventional Sugars and Lignin Sources. Molecules 2023; 28:molecules28031455. [PMID: 36771117 PMCID: PMC9918925 DOI: 10.3390/molecules28031455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The present study focuses on using apricot seeds shells and walnut shells as a potential renewable material for biorefinery in Ukraine. The goal of the research work was to determine the relationship between the chemical composition of solid residues from biomass after acid pretreatment with H2SO4, alkaline pretreatment with NaOH, and a steam explosion pretreatment and the recovery of sugars and lignin after further enzymatic hydrolysis with the application of an industrial cellulase Cellic CTec2. Apricot seeds shells and walnut shells consist of lots of cellulose (35.01 and 24.19%, respectively), lignin (44.55% and 44.63%, respectively), hemicelluloses (10.77% and 26.68%, respectively), and extractives (9.97% and 11.41%, respectively), which affect the efficiency of the bioconversion of polysaccharides to sugars. The alkaline pretreatment was found to be more efficient in terms of glucose yield in comparison with that of acid and steam explosion, and the maximum enzymatic conversions of cellulose reached were 99.7% and 94.6% for the solids from the apricot seeds shells and the walnut shells, respectively. The maximum amount of lignin (82%) in the residual solid was obtained during the processing of apricot seed shells submitted to the acid pretreatment. The amount of lignin in the solids interferes with the efficiency of enzymatic hydrolysis. The results pave the way for the efficient and perspective utilization of shells through the use of inexpensive, simple and affordable chemical technologies, obtaining value-added products, and thus, reducing the amount of environmental pollution (compared to the usual disposal practice of direct burning) and energy and material external dependency (by taking advantage of these renewable, low-cost materials).
Collapse
Affiliation(s)
- Vita Halysh
- Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
- Laboratory of Kinetics and Mechanisms of Chemical Reactions on the Surface of Solids, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Str., 17, 03164 Kyiv, Ukraine
| | - Juan Miguel Romero-García
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
- Correspondence: (J.M.R.-G.); (E.C.); Tel.: +34-9532182163 (E.C.)
| | - Alfonso M. Vidal
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Tetiana Kulik
- Laboratory of Kinetics and Mechanisms of Chemical Reactions on the Surface of Solids, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Str., 17, 03164 Kyiv, Ukraine
| | - Borys Palianytsia
- Laboratory of Kinetics and Mechanisms of Chemical Reactions on the Surface of Solids, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Str., 17, 03164 Kyiv, Ukraine
| | - Minerva García
- Tecnológico Nacional de México/Instituto Tecnológico de Zitácuaro, Av. Tecnológico No. 186 Manzanillos, Zitácuaro 61534, Michoacán, Mexico
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
- Correspondence: (J.M.R.-G.); (E.C.); Tel.: +34-9532182163 (E.C.)
| |
Collapse
|
5
|
Hamid A, Zafar A, Latif S, Peng L, Wang Y, Liaqat I, Afzal MS, ul-Haq I, Aftab MN. Enzymatic hydrolysis of low temperature alkali pretreated wheat straw using immobilized β-xylanase nanoparticles. RSC Adv 2023; 13:1434-1445. [PMID: 36686938 PMCID: PMC9814908 DOI: 10.1039/d2ra07231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
A low temperature alkali (LTA) pretreatment method was used to treat wheat straw. In order to obtain good results, different factors like temperature, incubation time, NaOH concentration and solid to liquid ratio for the pretreatment process were optimized. Wheat straw is a potential biomass for the production of monomeric sugars. The objective of the current study was to observe the saccharification (%) of wheat straw with immobilized magnetic nanoparticles (MNPs). For this purpose, immobilized MNPs of purified β-xylanase enzyme was used for hydrolysis of pretreated wheat straw. Wheat straw was pretreated using the LTA method and analyzed by SEM analysis. After completion of the saccharification process, saccharification% was calculated by using a DNS method. Scanning electron micrographs revealed that the hemicellulose, cellulose and lignin were partially removed and changes in the cell wall structure of the wheat straw had caused it to become deformed, increasing the specific surface area, so more fibers of the wheat straw were exposed to the immobilized β-xylanase enzyme after alkali pretreatment. The maximum saccharification potential of wheat straw was about 20.61% obtained after pretreatment with optimized conditions of 6% NaOH, 1/10 S/L, 30 °C and 72 hours. Our results indicate the reusability of the β-xylanase enzyme immobilized magnetic nanoparticles and showed a 15% residual activity after the 11th cycle. HPLC analysis of the enzyme-hydrolyzed filtrate also revealed the presence of sugars like xylose, arabinose, xylobiose, xylotriose and xylotetrose. The time duration of the pretreatment has an important effect on thermal energy consumption for the low-temperature alkali method.
Collapse
Affiliation(s)
- Attia Hamid
- Institute of Industrial Biotechnology, Govt. College UniversityLahore 54000Pakistan+924299213341+923444704190
| | - Asma Zafar
- Faculty of Science and Technology, University of Central PunjabLahorePakistan
| | | | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture UniversityWuhanChina
| | - Yanting Wang
- Biomass and Bioenergy Research Center, Huazhong Agriculture UniversityWuhanChina
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College UniversityLahorePakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT)LahorePakistan
| | - Ikram ul-Haq
- Institute of Industrial Biotechnology, Govt. College UniversityLahore 54000Pakistan+924299213341+923444704190
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Govt. College UniversityLahore 54000Pakistan+924299213341+923444704190
| |
Collapse
|
6
|
Jihene J, Khalil A, Samia BS, Hela Y, Atef M, Jamel R, Mohamed K. Effect of fibrolytic enzyme supplementation of urea-treated wheat straw on nutrient intake, digestion, growth performance, and blood parameters of growing lambs. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Brenelli LB, Bhatia R, Djajadi DT, Thygesen LG, Rabelo SC, Leak DJ, Franco TT, Gallagher JA. Xylo-oligosaccharides, fermentable sugars, and bioenergy production from sugarcane straw using steam explosion pretreatment at pilot-scale. BIORESOURCE TECHNOLOGY 2022; 357:127093. [PMID: 35378280 DOI: 10.1016/j.biortech.2022.127093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the production of xylo-oligosaccharides (XOS) from sugarcane straw (SCS) using steam explosion (SE) pretreatment at pilot-scale, as well as co-production of fermentable sugars and lignin-rich residues for bioethanol and bioenergy, respectively. SE conditions 200 °C; 15 bar; 10 min led to 1) soluble XOS yields of up to 35 % (w/w) of initial xylan with ∼50 % of the recovered XOS corresponding to xylobiose and xylotriose, considered the most valuable sugars for prebiotic applications; 2) fermentable glucose yields from the enzymatic hydrolysis of SE-pretreated SCS of up to ∼78 %; 3) increase in the energy content of saccharified SCS residues (16 %) compared to the untreated material. From an integrated biorefinery perspective, it demonstrated the potential use of SCS for the production of value-added XOS ingredients as well as liquid and solid biofuel products.
Collapse
Affiliation(s)
- Lívia B Brenelli
- Interdisciplinary Center of Energy Planning, University of Campinas, Cora Coralina, 330, Campinas, São Paulo, Brazil; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Rakesh Bhatia
- Department of Agronomy and Plant Breeding, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Demi T Djajadi
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Lisbeth G Thygesen
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Sarita C Rabelo
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Avenida Universitária, 3780, Altos do Paraíso, São Paulo, Brazil
| | - David J Leak
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Telma T Franco
- School of Chemical Engineering, University of Campinas (UNICAMP), Av. Albert Einstein, Campinas, São Paulo 13083-852, Brazil
| | - Joe A Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| |
Collapse
|
8
|
Sofokleous M, Christofi A, Malamis D, Mai S, Barampouti EM. Bioethanol and biogas production: an alternative valorisation pathway for green waste. CHEMOSPHERE 2022; 296:133970. [PMID: 35176302 DOI: 10.1016/j.chemosphere.2022.133970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Biofuels are a research field of great interest given the environmental benefits they offer over conventional fossil fuels. Nowadays, it is urgent to find ways of utilizing waste in the direction of biofuels production. The aim of this paper was the utilization of green waste (branches, leaves and ligno-cellulosic residues from tree prunings, hedge cuttings and grass clippings) towards biofuels production and specifically towards bioethanol and biogas. The experimental plan that was followed included biogas production through anaerobic digestion and bioethanol production through alcoholic fermentation after the necessary chemical pretreatment (acid or alkaline hydrolysis) prior to enzymatic hydrolysis and fermentation. Based on the results obtained, three valorisation scenarios of green waste were designed and compared in terms of product mass intensity, product yield and energy content of biofuels produced. The optimal results for bioethanol production were 5.22 g/L ethanol, 70.61% saccharification yield and 33.67% ethanol yield with acid pretreatment using H2SO4 3% w/v, 475 μL/g cellulose CellicCtec2 and 10% solids loading. Regarding biogas, the highest biogas production observed was 267.1 mL biogas/g dry substrate resulting from anaerobic digestion of the alkaline stillage. Thus, the production of biofuels from green waste is technically feasible, although it provides moderate efficiencies. However, for a sustainable valorisation of green waste, other techno-economic factors such as the cost of enzymes, chemicals, energy, etc. must be taken into account.
Collapse
Affiliation(s)
- M Sofokleous
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science & Technology, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - A Christofi
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science & Technology, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - D Malamis
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science & Technology, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - S Mai
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science & Technology, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - E M Barampouti
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science & Technology, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece.
| |
Collapse
|
9
|
Kang YR, Su Y, Wang J, Chu YX, Tian G, He R. Effects of different pretreatment methods on biogas production and microbial community in anaerobic digestion of wheat straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51772-51785. [PMID: 33990921 DOI: 10.1007/s11356-021-14296-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The pretreatment of wheat straw has been recognized to be an essential step prior to anaerobic digestion, owing to the high abundance of lignocellulosic materials. In order to choose economical and effective techniques for the disposal of wheat straw, effects of five pretreatment methods including acid, alkali, co-pretreatment of acid and alkali, CaO2, and liquid digestate of municipal sewage sludge on anaerobic digestion of wheat straw were investigated by analyzing biogas production and organic matter degradation in the study. The results showed that among these pretreatment methods, the methane yield was highest in the liquid digestate pretreated-wheat straw with 112.6 mL gTS-1, followed by the acid, alkali, and CaO2 pretreatments, and the lowest was observed in the co-pretreatment of acid and alkali. Illumina MiSeq sequencing of the microbial communities in the anaerobic digesters revealed that the genera Ruminiclostridium including Ruminiclostridium and Ruminiclostridium 1, Hydrogenispora, and Capriciproducens were the main hydrolytic bacteria, acidogenic bacteria, and acetogenic bacteria, respectively, in the anaerobic digesters. Capriciproducens and Hydrogenispora dominated in the first and the later stages, respectively, in the anaerobic digesters, which could work as indicators of the anaerobic co-digestion stage of sludge and wheat straw. The total solid and SO42--S contents of the solid digestate and the NH4+-N concentration of the liquid digestate had a significant influence on the microbial community in the digesters. These findings indicated that liquid digestate pretreatment was a potential option to improve the anaerobic digestion of wheat straw, due to the low cost without additional chemical agents.
Collapse
Affiliation(s)
- Ya-Ru Kang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yao Su
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Guangming Tian
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Zabihi S, Sharafi A, Motamedi H, Esmaeilzadeh F, Doherty WOS. Environmentally friendly acetic acid/steam explosion/supercritical carbon dioxide system for the pre-treatment of wheat straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37867-37881. [PMID: 33723770 DOI: 10.1007/s11356-021-13410-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
It is well established that pretreatment of lignocellulosic biomass is required to achieve an effective enzymatic saccharification process. At the present time, most of the touted pre-treatment technologies would cause environmental pollution and unsustainable water use for the pretreated material prior to enzymatic saccharification. To address these shortcomings, the pretreatment technology which combines the supercritical CO2, SC-CO2 (a green solvent), acetic acid, and steam explosion was used to assess the pretreatment of wheat straw for enzymatic saccharification. The effects of solvent concentration, impregnation temperature and time, pre-treatment time, and temperature, as well as SC-CO2 pressure, contact time, and temperature, were evaluated. The results identified that at the optimum SC-CO2 pressure of 18 MPa, the highest amount of reducing sugars (RS) was produced from the cellulosic pulp using Acetic acid/Steam/SC-CO2 at 200 °C for 30 min, a value 20% more than the pulp produced with the Water/Steam/SC-CO2. The effectiveness of the pretreatment process was attributed not only to delignification and defibrillation but also to the exposure of the cellulose structure evidenced from the proportion of the β-glycosidic linkages as shown by FTIR. Passing SC-CO2 after the pretreatment reduces the amounts of fermentation inhibitors and eliminates the use of wash water.
Collapse
Affiliation(s)
- Samyar Zabihi
- Department of Process Engineering, Research and Development Department, Shazand-Arak Oil Refinery Company, Arak, Iran
| | - Amir Sharafi
- Department of Process Engineering, Research and Development Department, Shazand-Arak Oil Refinery Company, Arak, Iran
| | - Hossein Motamedi
- Department of Biology Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Feridun Esmaeilzadeh
- Department of Chemical and Petroleum Engineering, School of Chemical and Petroleum Engineering, Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, University, Shiraz, Shiraz, 7134851154, Iran.
| | - William O S Doherty
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
11
|
Novakovic J, Kontogianni N, Barampouti EM, Mai S, Moustakas K, Malamis D, Loizidou M. Towards upscaling the valorization of wheat straw residues: alkaline pretreatment using sodium hydroxide, enzymatic hydrolysis and biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24486-24498. [PMID: 32342419 DOI: 10.1007/s11356-020-08905-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulosic biomass is considered as a recalcitrant substrate for anaerobic digestion due to its complex nature that limits its biological degradation. Therefore, suitable preprocessing for the improvement of the performance of conventional anaerobic digestion remains a challenge in the development of anaerobic digestion technology. The physical and chemical characteristics of wheat straw (WS), as a representative lignocellulosic biomass, have a significant impact on the anaerobic digestion process in terms of quantity and quality of the produced biogas. This study aimed at investigating the enzymatic saccharification and detoxification of straw prior to anaerobic digestion with the final objective of enhancing the performance of conventional anaerobic systems of recalcitrant fractions of agricultural waste. The experimental activity was performed in lab and pilot scale treating WS. Alkaline delignification of straw using sodium hydroxide (NaOH) was studied prior to enzymatic hydrolysis for the production of easily biodegradable sugars. After defining the optimum conditions for the pretreatment scheme, the anaerobic digestability of the effluents produced was measured. Finally, the final liquid effluents were fed to a pilot scale anaerobic digester of 0.5 m3 volume, applying an increasing organic loading rate (OLR) regime (in terms of chemical oxygen demand (COD) from 0.2 to 15 kg COD/m3/day). The optimum conditions for the delignification and enzymatic hydrolysis of WS were defined as 0.5 M NaOH at 50 °C for 3-5 h and 15 μL Cellic CTec2/g pretreated straw at 50 °C. It was proven that the resulting liquid effluents could be fed to an anaerobic digester in the ratio that they are produced with satisfactory COD removal efficiencies (over 70%) for OLRs up to 10 kg COD/m3/day. This value is correspondent to a hydraulic retention time of around 7.5 days, much lower than the respective one for untreated straw (over 12 days).
Collapse
Affiliation(s)
- Jelica Novakovic
- School of Chemical Engineering, Unit of Environmental Science Technology, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Nikoleta Kontogianni
- School of Chemical Engineering, Unit of Environmental Science Technology, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Elli Maria Barampouti
- School of Chemical Engineering, Unit of Environmental Science Technology, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Sofia Mai
- School of Chemical Engineering, Unit of Environmental Science Technology, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Konstantinos Moustakas
- School of Chemical Engineering, Unit of Environmental Science Technology, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Dimitris Malamis
- School of Chemical Engineering, Unit of Environmental Science Technology, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Maria Loizidou
- School of Chemical Engineering, Unit of Environmental Science Technology, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece.
| |
Collapse
|
12
|
Ntaikou I, Siankevich S, Lyberatos G. Effect of thermo-chemical pretreatment on the saccharification and enzymatic digestibility of olive mill stones and their bioconversion towards alcohols. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24570-24579. [PMID: 32557020 DOI: 10.1007/s11356-020-09625-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the effect of thermo-chemical pretreatment on the enhancement of enzymatic digestibility of olive mill stones (OMS), as well as its possible valorisation via bioconversion of the generated free sugars to alcohols. Specifically, the influence of parameters such as reaction time, temperature, type and concentration of dilute acids and/or bases, was assessed during the thermo-chemical pretreatment. The hydrolysates and the solids remaining after pretreatment, as well as the whole pretreated slurries, were further evaluated as potential substrates for the simultaneous production of ethanol and xylitol via fermentation with the yeast Pachysolen tannophilus. The digestibility and overall saccharification of OMS were considerably enhanced in all cases, with the maximum enzymatic digestibility observed for dilute sodium hydroxide (almost 4-fold) which also yielded the highest total saccharification yield (91% of the total OMS carbohydrates). Ethanol and xylitol yields from the untreated OMS were 28 g/kg OMS and 25 g/kg OMS, respectively, and were both significantly enhanced by pretreatment. The highest ethanol yield was 79 g/kg OMS and was achieved by the alkali pretreatment and separate fermentation of hydrolysates and solids, whereas the highest xylitol yield was 49 g/kg OMS and was obtained by pretreatment with sulphuric acid and separate fermentation of hydrolysates and solids.
Collapse
Affiliation(s)
- Ioanna Ntaikou
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences, Stadiou 10, Platani, GR 50600, Patras, Greece.
| | - Sviatlana Siankevich
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences, Stadiou 10, Platani, GR 50600, Patras, Greece
- Embion Technologies SA, Chemin de la Dent-d'Oche 1 A, Ecublens VD, 1024, Vaud, Switzerland
| | - Gerasimos Lyberatos
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences, Stadiou 10, Platani, GR 50600, Patras, Greece
- School of Chemical Engineering Sciences, National Technical University of Athens, GR 15780, Athens, Greece
| |
Collapse
|
13
|
Do NH, Pham HH, Le TM, Lauwaert J, Diels L, Verberckmoes A, Do NHN, Tran VT, Le PK. The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw. Sci Rep 2020; 10:21263. [PMID: 33277520 PMCID: PMC7718241 DOI: 10.1038/s41598-020-77867-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022] Open
Abstract
Difficulties in the production of lignin from rice straw because of high silica content in the recovered lignin reduce its recovery yield and applications as bio-fuel and aromatic chemicals. Therefore, the objective of this study is to develop a novel method to reduce the silica content in lignin from rice straw more effectively and selectively. The method is established by monitoring the precipitation behavior as well as the chemical structure of precipitate by single-stage acidification at different pH values of black liquor collected from the alkaline treatment of rice straw. The result illustrates the significant influence of pH on the physical and chemical properties of the precipitate and the supernatant. The simple two-step acidification of the black liquor at pilot-scale by sulfuric acid 20w/v% is applied to recover lignin at pH 9 and pH 3 and gives a percentage of silica removal as high as 94.38%. Following the developed process, the high-quality lignin could be produced from abundant rice straw at the industrial-scale.
Collapse
Affiliation(s)
- Nghi H Do
- Institute of Natural Products Chemistry - Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Hieu H Pham
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Tan M Le
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Jeroen Lauwaert
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials, Textiles and Chemical Engineering (MaTCh), Faculty of Engineering and Architecture, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Ludo Diels
- Institute of Environment and Sustainable Development (IMDO), University Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - An Verberckmoes
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials, Textiles and Chemical Engineering (MaTCh), Faculty of Engineering and Architecture, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Nga H N Do
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Viet T Tran
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Phung K Le
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Vietnam. .,Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| |
Collapse
|
14
|
Gullón P, Gullón B, Muñiz-Mouro A, Lú-Chau TA, Eibes G. Valorization of horse chestnut burs to produce simultaneously valuable compounds under a green integrated biorefinery approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139143. [PMID: 32417529 DOI: 10.1016/j.scitotenv.2020.139143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
A biorefinery scheme for the valorization of horse chestnut biowastes (a municipal solid waste) into added value bioactive compounds is proposed in this work. The bur fraction of horse chestnut was evaluated as a novel and cheap renewable feedstock to obtain valuable compounds suitable for their use in industrial applications. The integrated valorization scheme comprised an initial hydroethanolic extraction of antioxidant compounds (optimized through surface response methodology), the alkaline delignification of the exhausted solid to obtain a lignin-enriched fraction, and the enzymatic digestibility of the remaining cellulose fraction to produce fermentable sugars. In addition, the structural characterization of the extract by FT-IR and TGA was performed, and the analysis by UPLC-DAD-ESI-MS allowed the tentative identification of eleven antioxidant phenolic compounds. The application of this multiproduct valorization approach led to the production of 13 kg antioxidant extracted compounds, 33.2 kg lignin and 14.5 kg glucose per each 100 kg of horse chestnut burs, which demonstrates the great potential of this residue as a biorefinery substrate.
Collapse
Affiliation(s)
- Patricia Gullón
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello, 6, 36208 Vigo, Pontevedra, Spain.
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain.
| | - Abel Muñiz-Mouro
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Thelmo A Lú-Chau
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gemma Eibes
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|