1
|
Zhao K, Wang K, Qian S, Wang S, Li F. Occurrence, removal, and risk assessment of polycyclic aromatic hydrocarbons and their derivatives in typical wastewater treatment plants. ENVIRONMENTAL RESEARCH 2024; 252:118989. [PMID: 38677406 DOI: 10.1016/j.envres.2024.118989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Wastewater treatment plants (WWTPs) have a certain removal capacity for polycyclic aromatic hydrocarbons (PAHs) and their derivatives, but some of them are discharged with effluent into the environment, which can affect the environment. Therefore, to understand the presence, sources, and potential risks of PAHs and their derivatives in WWTPs. Sixteen PAHs, three chlorinated polycyclic aromatic hydrocarbons (ClPAHs), three oxidized polycyclic aromatic hydrocarbons (OPAHs), and three methylated polycyclic aromatic hydrocarbons (MPAHs) were detected in the influent and effluent water of three WWTPs in China. The average concentrations of their influent ∑PAHs, ∑ClPAHs, ∑OPAHs, and ∑MPAHs ranged from 2682.50 to 2774.53 ng/L, 553.26-906.28 ng/L, 415.40-731.56 ng/L, and 534.04-969.83 ng/L, respectively, and the effluent concentrations ranged from 823.28 to 993.37 ng/L, 269.43-489.94 ng/L, 285.93-463.55 ng/L, and 376.25-512.34 ng/L, respectively. The growth of heat transport and industrial energy consumption in the region has a significant impact on the level of PAHs in WWTPs. According to the calculated removal efficiencies of PAHs and their derivatives in the three WWTPs (A, B, and C), the removal rates of PAHs and their derivatives were 69-72%, 62-71%, and 68-73%, respectively, and for the substituted polycyclic aromatic hydrocarbons (SPAHs), the removal rates were 41-49%, 31-40%, and 33-39%, respectively; moreover, the removal rates of PAHs were greater than those of SPAHs in the WWTPs. The results obtained via the ratio method indicated that the main sources of PAHs in the influent of WWTPs were the combustion of coal and biomass, and petroleum contamination was the secondary source. In risk evaluation, there were 5 compounds for which the risk quotient was considered high ecological risk. During chronic disease evaluation, there were 11 compounds with a risk quotient considered to indicate high risk. PAHs and SPAHs with high relative molecular masses in the effluent of WWTPs pose more serious environmental hazards than their PAHs counterparts.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, China.
| | - Kaixuan Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, China
| | - Shifeng Qian
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, China
| | - Su Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Jin T, Li D, Liu Y, Li K, Wang L. Microbe combined with Fe 2+-heat activated persulfate to decompose phenanthrene in red soil: comparison of acid-resistant degrading microflora and indigenous bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113932-113947. [PMID: 37853225 DOI: 10.1007/s11356-023-29949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
This work is designed to counteract the deficiency of targeted research on the PAHs polluted specific soil, especially when the chemicals extremely denatured it. Phenanthrene-contaminated red soil was treated through two-stage process: persulfate oxidation (on dosages of 3.48%, 5.21%, and 6.94%, combined with Fe2+ and β-cyclodextrin, then heated) followed by biodegradation (indigenous bacteria vs. acid-resistant PAHs-degrading microflora (named ADM)) for 90 days. The dosage of oxidant greatly affected the removal efficiencies, which ranged from 46.78 to 85.34% under different treatment. After undergoing oxidation, the soil pH dropped below 3.0 synchronously and retained relatively strong oxidation state. The indigenous bacteria in red soil showed considerable degradation potential that will not vanish upon the sudden change of soil properties, whose average combined removal reached 95.43%, even higher than subgroups of bioaugmentation, but the population structure showed extremely simplex (Proteobacteria as superior occupied proportion of 91.77% after 90-day rehabilitation). The ADM screened from the coking wastewater was dominated by Klebsiella (75.4%) and Pseudomonas (23.6%), whose cooperation with 6.94% persulfate made the residual PHE reduced to less than 50 mg·kg-1 in about 28 days. High-throughput sequencing analysis showed that the microbial community composition of the ADM applied-group was more abundant in the later stage of remediation. ADM inoculation has the advantages of shortening the restoration period and having a positive impact on the soil micro-ecology.
Collapse
Affiliation(s)
- Tao Jin
- School of Environment and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Dan Li
- School of Environment and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Yanzehua Liu
- School of Environment and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Liping Wang
- School of Environment and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
3
|
Qin R, Xu T, Jia X. Engineering Pseudomonas putida To Produce Rhamnolipid Biosurfactants for Promoting Phenanthrene Biodegradation by a Two-Species Microbial Consortium. Microbiol Spectr 2022; 10:e0091022. [PMID: 35730952 PMCID: PMC9431653 DOI: 10.1128/spectrum.00910-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic contaminants that pose a significant environmental hazard. Phenanthrene is one of the model compounds for the study of biodegradation of PAHs. However, the biodegradation of phenanthrene is often limited by its low water solubility and dissolution rate. To overcome this limitation, we engineered a strain of Pseudomonas putida to produce rhamnolipid biosurfactants and thereby promote phenanthrene biodegradation by an engineered strain of Escherichia coli constructed previously in our lab. The E. coli-P. putida two-species consortium exhibited a synergistic effect of these two distinct organisms in degrading phenanthrene, resulting in an increase from 61.15 to 73.86% of the degradation ratio of 100 mg/L phenanthrene within 7 days. After additional optimization of the degradation conditions, the phenanthrene degradation ratio was improved to 85.73%. IMPORTANCE Polycyclic aromatic hydrocarbons (PAHs), which are recalcitrant, carcinogenic, and tend to bioaccumulate, are widespread and persistent environmental pollutants. Based on these characteristics, the U.S. Environmental Protection Agency has listed PAHs as priority contaminants. Although there are many methods to treat PAH pollution, these methods are mostly limited by the poor water solubility of PAHs, which is especially true for the biodegradation process. Recent evidence of PAH-contaminated sites suffering from increasingly severe impact has emerged. As a result, the need to degrade PAHs is becoming urgent. The significance of our study lies in the development of nonpathogenic strains of biosurfactant-producing Pseudomonas aeruginosa for promoting the degradation of phenanthrene by engineered Escherichia coli.
Collapse
Affiliation(s)
- Ruolin Qin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Tao Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People’s Republic of China
| |
Collapse
|
4
|
Wang Z, Wang F, Xiang L, Bian Y, Zhao Z, Gao Z, Cheng J, Schaeffer A, Jiang X, Dionysiou DD. Degradation of mineral-immobilized pyrene by ferrate oxidation: Role of mineral type and intermediate oxidative iron species. WATER RESEARCH 2022; 217:118377. [PMID: 35397372 DOI: 10.1016/j.watres.2022.118377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Ferrate (Fe(VI)) salts like K2FeO4 are efficient green oxidants to remediate organic contaminants in water treatment. Minerals are efficient sorbents of contaminants and also excellent solid heterogeneous catalysts which might affect Fe(VI) remediation processes. By targeting the typical polycyclic aromatic hydrocarbon compound - pyrene, the application of Fe(VI) for oxidation of pyrene immobilized on three minerals, i.e., montmorillonite, kaolinite and goethite was studied for the first time. Pyrene immobilized on the three minerals was efficiently oxidized by Fe(VI), with 87%-99% of pyrene (10 μM) being degraded at pH 9.0 in the presence of a 50-fold molar excess Fe(VI). Different minerals favored different pH optima for pyrene degradation, with pH optima from neutral to alkaline following the order of montmorillonite (pH 7.0), kaolinite (pH 8.0), and goethite (pH 9.0). Although goethite revealed the highest catalytic activity on pyrene degradation by Fe(VI), the greater noneffective loss of the oxidative species by ready self-decay in the goethite system resulted in lower degradation efficiency compared to montmorillonite. Protonation and Lewis acid on montmorillonite and goethite assisted Fe(VI) oxidation of pyrene. The intermediate ferrate species (Fe(V)/Fe(IV)) were the dominant oxidative species accountable for pyrene oxidation, while the contribution of Fe(VI) species was negligible. Hydroxyl radical was involved in mineral-immobilized pyrene degradation and contributed to 11.5%-27.4% of the pyrene degradation in montmorillonite system, followed by kaolinite (10.8%-21.4%) and goethite (5.1%-12.2%) according to the hydroxyl radical quenching experiments. Cations abundant in the matrix and dissolved humic acid hampered pyrene degradation. Finally, two different degradation pathways both producing phthalic acid were identified. This study demonstrates efficient Fe(VI) oxidation of pyrene immobilized on minerals and contributes to the development of efficient environmentally friendly Fe(VI) based remediation techniques.
Collapse
Affiliation(s)
- Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiliang Zhao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhengyuan Gao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jingxing Cheng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, WorringerWeg 1, Aachen 52074, Germany
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dionysios D Dionysiou
- Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, United States
| |
Collapse
|
5
|
Qiao M, Qi W, Liu H, Qu J. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources. ENVIRONMENT INTERNATIONAL 2022; 163:107232. [PMID: 35427839 DOI: 10.1016/j.envint.2022.107232] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) have been ubiquitously detected in atmospheric, soil, sediment, and water environments, some of which show higher concentrations and toxicities than the parent polycyclic aromatic hydrocarbons (PAHs). The occurrence, source, fate, risks and methods of analysis for OPAHs in the atmosphere, soil, and the whole environment (comprising the atmosphere, soil, water, and biota) have been reviewed, but reviews focusing on OPAHs in the water environment have been lacking. Due to the higher polarity and water solubility of OPAHs than PAHs, OPAHs exist preferentially in water environments. In this review, the occurrence, ecological toxicity and source of OPAHs in surface water environments are investigated in detail. Most OPAHs show higher concentrations than the corresponding PAHs in surface water environments. OPAHs pose non-ignorable ecological risks to surface water ecosystems. Wastewater treatment plant effluent, atmospheric deposition, surface runoff, photochemical and microbiological transformation, and sediment release are possible sources for OPAHs in surface water. This review will fill important knowledge gaps on the migration and transformation of typical OPAHs in multiple media and their environmental impact on surface water environments. Further studies on OPAHs in the surface environment, including their ecotoxicity with the co-existing PAHs and mass flows of OPAHs from atmospheric deposition, surface runoff, transformation from PAHs, and sediment release, are also encouraged.
Collapse
Affiliation(s)
- Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Johansson C, Bataillard P, Biache C, Lorgeoux C, Colombano S, Joubert A, Défarge C, Faure P. Permanganate oxidation of polycyclic aromatic compounds (PAHs and polar PACs): column experiments with DNAPL at residual saturation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15966-15982. [PMID: 34642882 DOI: 10.1007/s11356-021-16717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Permanganate is an oxidant usually applied for in situ soil remediation due to its persistence underground. It has already shown great efficiency for dense nonaqueous phase liquid (DNAPL) degradation under batch experiment conditions. In the present study, experimental permanganate oxidation of a DNAPL - coal tar - sampled in the groundwater of a former coking plant was carried out in a glass bead column. Several glass bead columns were spiked with coal tar using the drainage-imbibition method to mimic on-site pollution spread at residual saturation as best as possible. The leaching of organic pollutants was monitored as the columns were flushed by successive sequences: successive injections of hot water, permanganate solution for oxidation, and ambient temperature water, completed by two injections of a tracer before and after oxidation. Sixteen conventional US-EPA PAHs and selected polar PACs were analyzed in the DNAPL remaining in the columns at the end of the experiment and in the particles collected at several steps of the flushing sequences. Permanganate oxidation of the pollutants was rapidly limited by interfacial aging of the DNAPL drops. Moreover, at the applied flow rate chosen to be representative of in situ injections and groundwater velocities, the reaction time was not sufficient to reach high degradation yields but induced the formation and the leaching of oxygenated PACs.
Collapse
Affiliation(s)
- Clotilde Johansson
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
- Bureau de Recherches Géologiques et Minières (BRGM), 45060, Orléans, France
- GeoRessources, CREGU, CNRS, Université de Lorraine, F-54000, Nancy, France
- SERPOL, 2 Chemin du Génie, BP 80, 69633, Vénissieux, France
| | | | - Coralie Biache
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | - Catherine Lorgeoux
- GeoRessources, CREGU, CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Stéfan Colombano
- Bureau de Recherches Géologiques et Minières (BRGM), 45060, Orléans, France
| | | | - Christian Défarge
- Institut des Sciences de la Terre d'Orléans, UMR 7327 Université d'Orléans-CNRS/INSU-BRGM, Polytech'Orléans, 45072, Orléans Cedex 2, France
- CETRAHE, Université d'Orléans, Polytech'Orléans, 45072, Orléans Cedex 2, France
| | - Pierre Faure
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France.
| |
Collapse
|
7
|
González Henao S, Karanauskas V, Drummond SM, Dewitt LR, Maloney CM, Mulu C, Weber JM, Barge LM, Videau P, Gaylor MO. Planetary Minerals Catalyze Conversion of a Polycyclic Aromatic Hydrocarbon to a Prebiotic Quinone: Implications for Origins of Life. ASTROBIOLOGY 2022; 22:197-209. [PMID: 35100015 DOI: 10.1089/ast.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrochemical environments and are disbursed into planetary environments via meteorites and extraterrestrial infall where they may interact with mineral phases to produce quinones important for origins of life. In this study, we assessed the potential of the phyllosilicates montmorillonite (MONT) and kaolinite (KAO), and the enhanced Mojave Mars Simulant (MMS) to convert the PAH anthracene (ANTH) to the biologically important 9,10-anthraquinone (ANTHQ). All studied mineral substrates mediate conversion over the temperature range assessed (25-500°C). Apparent rate curves for conversion were sigmoidal for MONT and KAO, but quadratic for MMS. Conversion efficiency maxima for ANTHQ were 3.06% ± 0.42%, 1.15% ± 0.13%, and 0.56% ± 0.039% for MONT, KAO, and MMS, respectively. We hypothesized that differential substrate binding and compound loss account for the apparent conversion kinetics observed. Apparent loss rate curves for ANTH and ANTHQ were exponential for all substrates, suggesting a pathway for wide distribution of both compounds in warmer prebiotic environments. These findings improve upon our previously reported ANTHQ conversion efficiency on MONT and provide support for a plausible scenario in which PAH-mineral interactions could have produced prebiotically relevant quinones in early Earth environments.
Collapse
Affiliation(s)
| | | | - Samuel M Drummond
- Department of Chemistry, Dakota State University, Madison, South Dakota, USA
| | - Lillian R Dewitt
- Department of Chemistry, Dakota State University, Madison, South Dakota, USA
| | | | - Christina Mulu
- Department of Chemistry, Dakota State University, Madison, South Dakota, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | - Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, South Dakota, USA
| |
Collapse
|
8
|
Philippe N, Davarzani H, Colombano S, Dierick M, Klein PY, Marcoux M. Experimental study of thermally enhanced recovery of high-viscosity DNAPL in saturated porous media under non-isothermal conditions. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 243:103861. [PMID: 34391967 DOI: 10.1016/j.jconhyd.2021.103861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/11/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Thermal enhancement is known to be an efficient way to decrease the residual saturation of some common dense non-aqueous phase liquids (DNAPLs) after pumping. However, the effect of transient heat transfer during the recovery of a high-viscosity contaminant, such as coal tar, in highly permeable porous media is still unknown. A 2D tank experimental setup allowing monitoring of temperature and saturation fields during DNAPL pumping has been developed. Experiments were run under isothermal and non-isothermal conditions, at low and high flow rates. We investigated the presence of viscous fingering and how that influences the shape of the cone of depression, as well as the residual saturation. The saturation fields show that less viscous fingering occurs in pre-heated cases and that heating increases the recovery efficiency. Increasing the temperature increases the critical velocity and the viscosity ratio and helps to stabilize the interface between the non-wetting and wetting phase. Observations were first made on an oil and ethanol fluid pair because its properties were known, before extending the experiments to a coal tar and water fluid pair. Residual oil saturation after pumping was decreased by 6-16% in all pre-heated conditions. Pumping at low flow rate in these conditions leaves the smallest oil residual saturation (20%) after pumping. A low flow rate increases the recovery efficiency by reducing viscous fingering and by spreading the generated heat to a larger part of the tank. Finally, results on coal tar pumping show that the high thermal conductivity of water helps in keeping the temperature high during pumping. The residual coal tar saturation was reduced from 40% at 20 °C to 28% when pre-heating the tank. Operating at a low flow rate and with a uniform temperature is the key to recovering the highest amount of a viscous DNAPL such as coal tar from the soil and satisfying cleanup goals when using thermally enhanced pumping.
Collapse
Affiliation(s)
- Nicolas Philippe
- BRGM (French Geological Survey), 3 avenue Claude Guillemin, 45100 Orléans, France; REMEA, 22-24 rue Lavoisier, 92000 Nanterre, France
| | - Hossein Davarzani
- BRGM (French Geological Survey), 3 avenue Claude Guillemin, 45100 Orléans, France.
| | - Stéfan Colombano
- BRGM (French Geological Survey), 3 avenue Claude Guillemin, 45100 Orléans, France
| | | | | | - Manuel Marcoux
- Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, 31400 Toulouse, France
| |
Collapse
|
9
|
Monfort O, Usman M, Hanna K. Ferrate(VI) oxidation of pentachlorophenol in water and soil. CHEMOSPHERE 2020; 253:126550. [PMID: 32272307 DOI: 10.1016/j.chemosphere.2020.126550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Although the use of ferrate (VI), an emerging green oxidant, has been widely investigated to remove organic pollutants in water, its ability to remediate contaminated soils has been scarcely evaluated. Here, we explore the use of ferrate (VI) to degrade a polychlorinated persistent compound, the pentachlorophenol (PCP), in aqueous solution and in an aged contaminated soil under batch, water-saturated and water-unsaturated flow conditions. The first results showed the prominent efficiency of ferrate (VI) over conventional oxidants (e.g. H2O2 and persulfate) in both matrices and at different oxidant doses. In aqueous solution, more than 80% of PCP was degraded by ferrate (VI) while complete removal was observed in soil under batch conditions. In column experiments, PCP removal by ferrate (VI) remained efficient but dependent on the flow rate and water saturation. Maximum PCP removal (95%) in columns was observed under water saturated conditions when ferrate (VI) (0.2 g g-1 of soil) was injected at a low flow rate (i.e. 0.025 mL min-1). This study has strong implications in the development of new sustainable processes based on ferrate (VI) for the remediation of different environmental compartments.
Collapse
Affiliation(s)
- Olivier Monfort
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovicova 6, Mlynska Dolina, 84215, Bratislava, Slovakia.
| | - Muhammad Usman
- Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, 72074, Tübingen, Germany; PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Khalil Hanna
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France; Institut Universitaire de France (IUF), MESRI, 1 Rue Descartes, 75231, Paris, France
| |
Collapse
|