1
|
Jiang Y, Jia H, Yang W, Wang Z, Cui S, Li YF. Trophic transfer of dechloranes in marine food webs in Dalian Bay, China. CHEMOSPHERE 2024; 364:143087. [PMID: 39154766 DOI: 10.1016/j.chemosphere.2024.143087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/27/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Dechloranes, including dechlorane 602 (Dec 602), dechlorane 603 (Dec 603), dechlorane 604 (Dec 604), dechlorane plus (DP, including syn- and anti-DP) and mirex, were determined in marine food web from Dalian Bay, Northeast China to investigate their occurrence andtrophic transfer. In all organisms, the detection rates were Dec 602 (99%) > mirex (95%) > Dec 603 (92%) > anti-DP (91%) > syn-DP (82%) > Dec 604 (9.6%). The concentrations were 0.92-16 ng/g lipid weight (lw) for mirex, 0.53-2.3 ng/g lw for syn-DP, 1.1-4.5 ng/g lw for anti-DP, 0.19-5.0 ng/g lw for Dec 602, 0.26-1.9 ng/g lw for Dec 603 and 0.020-0.33 ng/g lw for Dec 604. Significant positive relationships (p < 0.0001) were observed between lipid normalized concentrations and trophic levels for mirex (R2 = 0.80) and Dec602 (R2 = 0.82) in food webs, with the calculated TMFs values of 3.09 and 3.39, respectively, indicating the trophic magnification potential of these compounds. For syn-DP, anti-DP, Dec 603 and Dec 604, the similar significant relationships were not found, suggesting that these chemicals do not trophic magnification nor trophic dilution in the food web. With low log KOW values for mirex (7.01) and Dec 602 (8.05), these two compounds have the highest magnifications potentials, while the magnification potential of Dec 603, Dec 604 and DP dramatically decreased because of their extremely big log KOW values (higher than 10). The observed fractional abundance of anti-DP (fanti) ranged of 0.58-0.69, closing to the one in Chinese industrial products, indicating DP isomers had not undergone significant differences of physicochemical or biological process in the studied food web.
Collapse
Affiliation(s)
- Yan Jiang
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, PR China
| | - Hongliang Jia
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, PR China.
| | - Wenchao Yang
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, 116023, PR China.
| | - Zhaowei Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, PR China
| | - Song Cui
- IJRC-PTS, School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, PR China
| | - Yi-Fan Li
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, PR China; IJRC-PTS, School of Environment, Harbin Institute of Technology, Harbin, PR China
| |
Collapse
|
2
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Chen W, Bao J, Bu T, Jin H, Liu Y, Li T, Wang H, Zhao P, Wang Y, Hu J, Jin J. Dechlorane Plus Biomagnification and Transmission through Prairie Food Webs in Inner Mongolia, China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:413-421. [PMID: 33170516 DOI: 10.1002/etc.4923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/08/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Dechlorane Plus (DP) is found widely in the environment. It is important to study DP enrichment and biomagnification in terrestrial ecosystems to improve our understanding of the possible effects of DP on the environment and human health. A total of 90 samples, including plant and animal tissues, were collected from Xilingol Prairie in Inner Mongolia, China. The DP concentrations in different species were assessed, and transmission of DP through food webs containing ectotherms and endotherms was assessed. The compound was detected in the biotic samples (plant; range 0.133-0.422 ng/g dry wt), in animal muscle (range: not dected-5.70 ng/g lipid wt), and in animal hair (range: not dected-2.03 ng/g dry wt), indicating that DP is present in remote environments such as Xilingol Prairie. These findings suggest that DP can undergo long-distance transport in the environment. Biomagnification factors (ectotherms: range 0.146-88.0, endotherms: range 0.866-17.2) and anti-DP/total DP concentration ratios (fanti values of 0.412-0.787) for the prairie animals were calculated. Ectotherms were found to selectively enrich syn-DP, and stereoselective enrichment increased moving up the food web. Lower-trophic-level endotherms strongly stereoselectively enriched syn-DP, and higher-trophic-level endotherms stereoselectively enriched anti-DP. Environ Toxicol Chem 2021;40:413-421. © 2020 SETAC.
Collapse
Affiliation(s)
- Wenming Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Junsong Bao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Te Bu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hongli Jin
- Department of Biological Medicine, Beijing City University, Beijing, China
| | - Yiming Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Tianwei Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Huiting Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Pengyuan Zhao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jicheng Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
4
|
de Wit CA, Bossi R, Dietz R, Dreyer A, Faxneld S, Garbus SE, Hellström P, Koschorreck J, Lohmann N, Roos A, Sellström U, Sonne C, Treu G, Vorkamp K, Yuan B, Eulaers I. Organohalogen compounds of emerging concern in Baltic Sea biota: Levels, biomagnification potential and comparisons with legacy contaminants. ENVIRONMENT INTERNATIONAL 2020; 144:106037. [PMID: 32835922 DOI: 10.1016/j.envint.2020.106037] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/25/2020] [Accepted: 08/03/2020] [Indexed: 05/25/2023]
Abstract
While new chemicals have replaced major toxic legacy contaminants such as polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT), knowledge of their current levels and biomagnification potential in Baltic Sea biota is lacking. Therefore, a suite of chemicals of emerging concern, including organophosphate esters (OPEs), short-chain, medium-chain and long-chain chlorinated paraffins (SCCPs, MCCPs, LCCPs), halogenated flame retardants (HFRs), and per- and polyfluoroalkyl substances (PFAS), were analysed in blue mussel (Mytilus edulis), viviparous eelpout (Zoarces viviparus), Atlantic herring (Clupea harengus), grey seal (Halichoerus grypus), harbor seal (Phoca vitulina), harbor porpoise (Phocoena phocoena), common eider (Somateria mollissima), common guillemot (Uria aalge) and white-tailed eagle (Haliaeetus albicilla) from the Baltic Proper, sampled between 2006 and 2016. Results were benchmarked with existing data for legacy contaminants. The mean concentrations for ΣOPEs ranged from 57 to 550 ng g-1 lipid weight (lw), for ΣCPs from 110 to 640 ng g-1 lw for ΣHFRs from 0.42 to 80 ng g-1 lw, and for ΣPFAS from 1.1 to 450 ng g-1 wet weight. Perfluoro-4-ethylcyclohexanesulfonate (PFECHS) was detected in most species. Levels of OPEs, CPs and HFRs were generally similar or higher than those of polybrominated diphenyl ethers (PBDEs) and/or hexabromocyclododecane (HBCDD). OPE, CP and HFR concentrations were also similar to PCBs and DDTs in blue mussel, viviparous eelpout and Atlantic herring. In marine mammals and birds, PCB and DDT concentrations remained orders of magnitude higher than those of OPEs, CPs, HFRs and PFAS. Predator-prey ratios for individual OPEs (0.28-3.9) and CPs (0.40-5.0) were similar or somewhat lower than those seen for BDE-47 (5.0-29) and HBCDD (2.4-13). Ratios for individual HFRs (0.010-37) and PFAS (0.15-47) were, however, of the same order of magnitude as seen for p,p'-DDE (4.7-66) and CB-153 (31-190), indicating biomagnification potential for many of the emerging contaminants. Lack of toxicity data, including for complex mixtures, makes it difficult to assess the risks emerging contaminants pose. Their occurence and biomagnification potential should trigger risk management measures, particularly for MCCPs, HFRs and PFAS.
Collapse
Affiliation(s)
- Cynthia A de Wit
- Department of Environmental Science, Stockholm University, Svante Arrheniusvägen 8, SE-10691 Stockholm, Sweden.
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | | | - Suzanne Faxneld
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 50007, SE-10405 Stockholm, Sweden.
| | - Svend Erik Garbus
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Peter Hellström
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 50007, SE-10405 Stockholm, Sweden.
| | - Jan Koschorreck
- Umweltbundesamt (UBA), Bismarckplatz 1, DE-14139 Berlin, Germany.
| | - Nina Lohmann
- Eurofins GfA Lab Service GmbH, Neuländer Kamp 1a, DE-21079 Hamburg, Germany.
| | - Anna Roos
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 50007, SE-10405 Stockholm, Sweden.
| | - Ulla Sellström
- Department of Environmental Science, Stockholm University, Svante Arrheniusvägen 8, SE-10691 Stockholm, Sweden.
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Gabriele Treu
- Umweltbundesamt (UBA), Section Chemicals, Wörlitzer Platz 1, DE-06844 Dessau-Roßlau, Germany.
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, Svante Arrheniusvägen 8, SE-10691 Stockholm, Sweden.
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|