1
|
Hussain MS, Gupta G, Mishra R, Patel N, Gupta S, Alzarea SI, Kazmi I, Kumbhar P, Disouza J, Dureja H, Kukreti N, Singh SK, Dua K. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathol Res Pract 2024; 255:155157. [PMID: 38320440 DOI: 10.1016/j.prp.2024.155157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Lung cancer (LCs) is still a serious health problem globally, with many incidences attributed to environmental triggers such as Volatile Organic Compounds (VOCs). VOCs are a broad class of compounds that can be released via various sources, including industrial operations, automobile emissions, and indoor air pollution. VOC exposure has been linked to an elevated risk of lung cancer via multiple routes. These chemicals can be chemically converted into hazardous intermediate molecules, resulting in DNA damage and genetic alterations. VOCs can also cause oxidative stress, inflammation, and a breakdown in the cellular protective antioxidant framework, all of which contribute to the growth of lung cancer. Moreover, VOCs have been reported to alter critical biological reactions such as cell growth, apoptosis, and angiogenesis, leading to tumor development and metastasis. Epidemiological investigations have found a link between certain VOCs and a higher probability of LCs. Benzene, formaldehyde, and polycyclic aromatic hydrocarbons (PAHs) are some of the most well-researched VOCs, with comprehensive data confirming their cancer-causing potential. Nevertheless, the possible health concerns linked with many more VOCs and their combined use remain unknown, necessitating further research. Identifying the toxicological consequences of VOCs in LCs is critical for establishing focused preventative tactics and therapeutic strategies. Better legislation and monitoring mechanisms can limit VOC contamination in occupational and environmental contexts, possibly reducing the prevalence of LCs. Developing VOC exposure indicators and analyzing their associations with genetic susceptibility characteristics may also aid in early identification and targeted therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll booth, Indore, Madhya Pradesh 452020, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
2
|
Chen ZW, Ting YC, Huang CH, Ciou ZJ. Sources-oriented contributions to ozone and secondary organic aerosol formation potential based on initial VOCs in an urban area of Eastern Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164392. [PMID: 37244610 DOI: 10.1016/j.scitotenv.2023.164392] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Over the past decades, the pollution of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere has become a major concern worldwide due to their adverse effects on human health, air quality and climate. Volatile organic compounds (VOCs) are crucial precursors of O3 and SOA, but identifying the primary sources of VOCs that contribute to the formation of O3 and SOA has been challenging due to the rapid consumption of VOCs by oxidants in the air. To address this issue, a study was conducted in a Taipei urban area in Taiwan, where the hourly data of 54 VOC species were collected from March 2020 to February 2021 detected by Photochemical Assessment Monitoring Stations (PAMS). The initial mixing ratios of VOCs (VOCsini) were determined by combining the observed VOCs (VOCsobs) and the consumed VOCs resulting from photochemical reactions. Additionally, the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) were estimated based on VOCsini. The OFP derived from VOCsini (OFPini) was found to exhibit a strong correlation with O3 mixing ratios (R2 = 0.82), whereas the OFP obtained from VOCsobs did not show such a correlation. Isoprene, toluene and m,p-xylene were the top three species contributing to OFPini, while toluene and m,p-xylene were the top two contributors to SOAFPini. Positive matrix factorization analysis revealed that biogenic, consumer/household products, and industrial solvents were the major contributors to OFPini in four seasons, and SOAFPini mostly came from consumer/household products and industrial solvents. This study highlights the importance of considering photochemical loss caused by different VOCs reactivity in the atmosphere when evaluating OFP and SOAFP. Moreover, it emphasizes the need to prioritize controlling the sources emitting the dominant VOC precursors of O3 and SOA to effectively alleviate the scenarios of elevated O3 and particulate matter.
Collapse
Affiliation(s)
- Zih-Wun Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chuan-Hsiu Huang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zih-Jhe Ciou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Liu Z, Zhu W, Yan G, Bai L, Han J, Li J, Sun Y, Wang Y, Hu B. Exploring the formation mechanism of fine particles in an ex-heavily polluted Northwestern city, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161333. [PMID: 36623666 DOI: 10.1016/j.scitotenv.2022.161333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Fine particle pollution is still a severe issue in the northwestern region of China where the formation mechanism of which remains ambiguous due to the limited studies there. In this study, a comprehensive study on the chemical composition and sources of PM2.5 at an ex-heavily polluted northwestern city was conducted, based on filter sampling data obtained from three consecutive winter campaigns during 2020-2022. The average PM2.5 during the three winter campaigns were 170.9 ± 66.4, 249.0 ± 75.7, and 200.9 ± 47.6 μg/m3, respectively, with the daily maximum value of PM2.5 exceeds 400 μg/m3 under stagnant meteorological conditions charactered by high relative humidity (>60 %) and low wind speed (<1 m/s). The major chemical components in PM2.5 were found to be inorganic aerosol (55.2 %) that mainly constituted by sulfate (24.2 %), and mineral dust (14.9 %); while the carbonous species contributed a minor fraction (∼13 %). In addition, (NH4)2SO4 and NH4NO3 were the dominate contributors to appearance of low visibility (<3 km) which together accounting for over 85 % of light extinction coefficient (bext) during heavy polluted period. Source appointment of fine particles was then conducted by applying the positive matrix factorization method, and the primary sources were resolved to be coal combustion (27.7 %) and biomass burning (18.6 %), followed by industrial dust (16.2 %), residential combustion (15.3 %), traffic emissions (11.9 %) and dust aerosol (10.4 %). To explore the potential formation mechanism of fine particle pollution, the chemical evolution pattern combined with gaseous pollutants and meteorological parameters were further analyzed, which refine the important role of primary emissions in the forming of high sulfate aerosol loading, while secondary formation was largely suppressed during the winter period that totally different from those reported in the developed regions of China, thus indicating more effort should be paid on the reduction of primary particles emissions in the northwestern cities than on its gaseous percussors.
Collapse
Affiliation(s)
- Zirui Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Weibin Zhu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangxuan Yan
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Lingyan Bai
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.
| | - Jiaxing Han
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- The Sixth Monitoring Station of Ecology and Environment Bureau, Xinjiang Production and Construction Corps, Urumqi 836099, China
| | - Yuyin Sun
- The First Monitoring Station of Ecology and Environment Bureau, Xinjiang Production and Construction Corps, Urumqi 830011, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Bo Hu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
4
|
Li X, Li B, Guo L, Feng R, Fang X. Research progresses on VOCs emission investigations via surface and satellite observations in China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1968-1981. [PMID: 36000414 DOI: 10.1039/d2em00175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) are important precursors of severe pollution of ozone (O3) and secondary organic aerosols in China. Fully understanding the VOCs emission is crucial for making regulations to improve air quality. This study reviews the published studies on atmospheric VOCs concentration observations in China and observation-based estimation of China's VOCs emission strengths and emission source structures. The results reveal that direct sampling and stainless-steel-tank sampling are the most commonly used methods for online and offline observations in China, respectively. The GC-MS/FID is the most commonly used VOCs measuring instrument in China (in 60.8% of the studies we summarized). Numerous studies conducted observation campaigns in urban areas (76.2%) than in suburban (17.1%), rural (18.1%), and background areas (14.3%) in China. Moreover, observation sites are largely set in eastern China (83.8%). Though there are published studies reporting observation-based China's VOCs emission investigation, these kinds of studies are still limited, and gaps are found between the results of top-down investigation and bottom-up inventories of VOCs emissions in China. In order to enhance the observation-based VOCs emission investigations in China, this study suggests future improvements including: (1) development of VOCs detection techniques, (2) strengthening of atmospheric VOCs observations, (3) improvement of the accuracy of observation-based VOCs emission estimations, and (4) facilitation of better VOCs emission inventories in China.
Collapse
Affiliation(s)
- Xinhe Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | - Bowei Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | - Liya Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | - Rui Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | - Xuekun Fang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
5
|
Luo W, Deng Z, Zhong S, Deng M. Trends, Issues and Future Directions of Urban Health Impact Assessment Research: A Systematic Review and Bibliometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105957. [PMID: 35627492 PMCID: PMC9141375 DOI: 10.3390/ijerph19105957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Health impact assessment (HIA) has been regarded as an important means and tool for urban planning to promote public health and further promote the integration of health concept. This paper aimed to help scientifically to understand the current situation of urban HIA research, analyze its discipline co-occurrence, publication characteristics, partnership, influence, keyword co-occurrence, co-citation, and structural variation. Based on the ISI Web database, this paper used a bibliometric method to analyze 2215 articles related to urban HIA published from 2012 to 2021. We found that the main research directions in the field were Environmental Sciences and Public Environmental Occupational Health; China contributed most articles, the Tehran University of Medical Sciences was the most influential institution, Science of the Total Environment was the most influential journal, Yousefi M was the most influential author. The main hotspots include health risk assessment, source appointment, contamination, exposure, particulate matter, heavy metals and urban soils in 2012–2021; road dust, source apposition, polycyclic aromatic hydrocarbons, air pollution, urban topsoil and the north China plain were always hot research topics in 2012–2021, drinking water and water quality became research topics of great concern in 2017–2021. There were 25 articles with strong transformation potential during 2020–2021, but most papers carried out research on the health risk assessment of toxic elements in soil and dust. Finally, we also discussed the limitations of this paper and the direction of bibliometric analysis of urban HIA in the future.
Collapse
Affiliation(s)
- Wenbing Luo
- School of Business, Hunan University of Science and Technology, Xiangtan 411201, China; (W.L.); (Z.D.)
- School of Accounting, Hunan University of Technology and Business, Changsha 410205, China
| | - Zhongping Deng
- School of Business, Hunan University of Science and Technology, Xiangtan 411201, China; (W.L.); (Z.D.)
| | - Shihu Zhong
- Shanghai National Accounting Institute, Shanghai 201702, China
- Correspondence:
| | - Mingjun Deng
- Big Data and Intelligent Decision Research Center, Hunan University of Science and Technology, Xiangtan 411201, China;
| |
Collapse
|
6
|
Characteristics and Impact of VOCs on Ozone Formation Potential in a Petrochemical Industrial Area, Thailand. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, the ambient concentrations of volatile organic compounds (VOCs) were intensively measured from January 2012 to December 2016 using an evacuated canister and were analyzed using a gas chromatography/mass spectrophotometer (GC/MS) based on the US EPA TO-15 in the community and industrial areas of the largest petroleum refinery and petrochemical industrial complex in Map Ta Phut Thailand. The ternary diagram was used to identify the source of VOCs. Reactivity of VOCs on their ozone formation potential (OFP) were quantified by the maximum incremental reactivity coefficient method (MIR) and propylene-equivalent concentration methods. Results from the study revealed that aromatic hydrocarbon was the dominant group of VOCs greatly contributing to the total concentration of measured VOCs. Among the measured VOCs species, toluene had the highest concentration and contributed as the major precursor to ozone formation. The ternary analysis of benzene:toluene:ethybenzene ratios indicated that VOCs mainly originated from mobile sources and industrial processes. Within the industrial area, measured VOC concentration was dominated by halogenated hydrocarbons, and alkene was the highest contributor to ozone formation. The propylene-equivalent concentration method was also used to evaluate the reactivity of VOCs and their role in ozone formation, and secondly to support findings from the MIR method.
Collapse
|
7
|
A Comprehensive Study of a Winter Haze Episode over the Area around Bohai Bay in Northeast China: Insights from Meteorological Elements Observations of Boundary Layer. SUSTAINABILITY 2022. [DOI: 10.3390/su14095424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on wind profile radar observations, along with high-frequency wave radar data, meteorological data, and air quality monitoring data, we studied a haze episode in Panjin—a coastal city around Bohai Bay in Northeast China—that occurred from 8 to 13 February 2020. The results show that this persistent pollution event was dominated by PM10 and PM2.5 and their mass concentrations were both ~120 μg/m3 in the mature stage. In the early stage, the southerly sea breeze of ~4.5 m/s brought a large amount of moist air from the sea, which provided sufficient water vapor for the condensation and nucleation of pollutants, and thus accelerated the formation of haze. In the whole haze process, a weak updraft first appeared in the boundary layer, according to the vertical profile, contributing to the collision and growth of particulate matter. Vertical turbulence was barely observed in the mature stage, with the haze layer reaching 900 m in its peak, suggesting stable stratification conditions of the atmospheric boundary layer. The explosive growth of pollutant concentrations was about 10 h later than the formation of the stable stratification condition of the boundary layer. The potential source areas of air pollutants were identified by the WRF-FLEXPART model, which showed the significant contribution of local emissions and the transport effect of sea breeze. This study provides insights into the formation mechanism of haze pollution in this area, but the data observed in this campaign are also valuable for numerical modeling.
Collapse
|
8
|
Yadav R, Beig G, Anand V, Kalbande R, Maji S. Tracer-based characterization of source variations of ambient isoprene mixing ratios in a hillocky megacity, India, influenced by the local meteorology. ENVIRONMENTAL RESEARCH 2022; 205:112465. [PMID: 34863985 DOI: 10.1016/j.envres.2021.112465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/30/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The ambient biogenic volatile organic compounds (BVOCs), mainly isoprene, are potentially involved in the formation of secondary pollutants, hence, they are significant in terms of air quality and climate. Although the largest sources of BVOCs are tropical regions, the measurements of isoprene in the Indian subcontinent are limited. We conducted the measurements of isoprene, benzene, and toluene at an urban site in a hillocky megacity of India using a high-sensitivity proton transfer reaction quadrupole mass spectrometer (PTR-QMS). The mixing ratios of isoprene were compared with those of aromatic compounds like benzene and toluene, which represent typical anthropogenic VOCs. Isoprene and isoprene/benzene (>5 ppbv ppbv-1) showed higher levels in the pre-monsoon months, most likely due to large emissions by urban vegetation during physiological activities in plants which was enhanced by the high ambient temperatures and solar radiation. While Benzene and toluene showed higher mixing ratios during winter, which were due to shallower boundary layer depths and transport of air masses from polluted Indo-Gangetic Plain during this season. The mixing ratios of VOCs show significant diurnal variation as a result of their different origins and the role of different meteorological parameters. The robust emission ratios of isoprene/benzene obtained from nighttime data were used to separate the non-anthropogenic and anthropogenic isoprene emissions. ∼30% enhancement observed in non-anthropogenic emissions to isoprene from winter to pre-monsoon season when temperatures and solar radiation were stronger, although traffic in the city. Isoprene/benzene ratio at lower temperatures (<25 °C) and solar radiation (<100 W m-2) was predominantly controlled by anthropogenic sources. Overall, toluene and isoprene are the most frequent species in terms of having the highest ozone-forming potential (OFP) values but biogenic isoprene became more important to ozone formation during the afternoon hours in the pre-monsoon months with high air temperatures (>25 °C).
Collapse
Affiliation(s)
- Ravi Yadav
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Government of India, Pune, India.
| | - Gufran Beig
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Government of India, Pune, India
| | - Vrinda Anand
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Government of India, Pune, India
| | - Ritesh Kalbande
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Government of India, Pune, India
| | - Sujit Maji
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Government of India, Pune, India
| |
Collapse
|
9
|
Zhang X, Li C, Shahzad K, Han M, Guo Y, Huang X, Wu T, Wang L, Zhang Y, Tang H, Zhang Q, Wang M, Zhou P, Zhong F. Seasonal Differences in Fecal Microbial Community Structure and Metabolism of House-Feeding Chinese Merino Fine-Wool Sheep. Front Vet Sci 2022; 9:875729. [PMID: 35400091 PMCID: PMC8989412 DOI: 10.3389/fvets.2022.875729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
The digestive tract microorganisms play a very important role in the host's nutrient intake, environmental suitability, and affect the host's physiological mechanism. Previous studies showed that in different seasons, mammalian gut microbes would be different. However, most of them are concentrated in wild animals. It remains unclear how seasonal change affects the gut microbes of Chinese merino fine-wool Sheep. Therefore, in this experiment, we continuously collected blood and feces samples of 50 Chinese merino fine-wool sheep in different seasons, measured the physiological indicators of blood, and passed 16S rRNA amplicon sequencing, determined the microbial community structure of fecal microorganisms and predicted flora function by PICRUSt. The results of blood physiological indicators showed that WBC, Neu and Bas in spring were significantly higher than those of other seasons. Fecal microbial sequencing revealed seasonal changes in gut microbial diversity and richness. Among them, Chinese merino fine-wool sheep had the highest gut microbes in summer. Firmicutes and Bacteroidetes were the dominant phyla, and they were unaffected by seasonal fluctuations. LEfSE analysis was used to analyze representative microorganisms in different seasons. The Lachnospiraceae and its genera (Lachnospiraceae_NK4A136_group, Lachnospiraceae_AC2044_group, g_unclassified_f_ Lachnospiraceae) were representative microorganisms in the three seasons of spring, summer and winter with harsh environmental conditions; while in autumn with better environmental conditions, the Ruminococcaceae and its genus (Ruminococcaceae_UCG-009 and Ruminococcaceae_UCG-005) were the representative microorganism. In autumn, the ABC transporter and the pyruvate metabolic pathway were significantly higher than other seasons. Correlation analysis results showed that Lachnospiraceae participated in the ABC transporters metabolic pathway, which caused changes in the blood physiological indicators. Overall, our results showed that, in response to seasonal changes, Chinese merino fine-wool sheep under house-feeding have adjusted their own gut microbial community structure, causing changes in the metabolism, and thus changing the physiological conditions of the blood. In the cold season, producers should focus on regulating the nutritional level of feed, enhancing the level of butyric acid in young animals to increase the ABC transporter, resist the external harsh environment, and improve the survival rate.
Collapse
Affiliation(s)
- Xingxing Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Chuang Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Mengli Han
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yanhua Guo
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xin Huang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Tongzhong Wu
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Limin Wang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yiyuan Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Hong Tang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Qian Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Mengzhi Wang
| | - Ping Zhou
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Ping Zhou
| | - Fagang Zhong
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Fagang Zhong
| |
Collapse
|
10
|
Spatio-Temporal Characteristics of Air Quality Index (AQI) over Northwest China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030375] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In recent years, air pollution has become a serious threat, causing adverse health effects and millions of premature deaths in China. This study examines the spatial-temporal characteristics of ambient air quality in five provinces (Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia (NX), and Qinghai (QH)) of northwest China (NWC) from January 2015 to December 2018. For this purpose, surface-level aerosol pollutants, including particulate matter (PMx, x = 2.5 and 10) and gaseous pollutants (sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3)) were obtained from China National Environmental Monitoring Center (CNEMC). The results showed that fine particulate matter (PM2.5), coarse particulate matter (PM10), SO2, NO2, and CO decreased by 28.2%, 32.7%, 41.9%, 6.2%, and 27.3%, respectively, while O3 increased by 3.96% in NWC during 2018 as compared with 2015. The particulate matter (PM2.5 and PM10) levels exceeded the Chinese Ambient Air Quality Standards (CAAQS) Grade II standards as well as the WHO recommended Air Quality Guidelines, while SO2 and NO2 complied with the CAAQS Grade II standards in NWC. In addition, the average air quality index (AQI), calculated from ground-based data, improved by 21.3%, the proportion of air quality Class I (0–50) improved by 114.1%, and the number of pollution days decreased by 61.8% in NWC. All the pollutants’ (except ozone) AQI and PM2.5/PM10 ratios showed the highest pollution levels in winter and lowest in summer. AQI was strongly positively correlated with PM2.5, PM10, SO2, NO2, and CO, while negatively correlated with O3. PM10 was the primary pollutant, followed by O3, PM2.5, NO2, CO, and SO2, with different spatial and temporal variations. The proportion of days with PM2.5, PM10, SO2, and CO as the primary pollutants decreased but increased for NO2 and O3. This study provides useful information and a valuable reference for future research on air quality in northwest China.
Collapse
|
11
|
Chen WQ, Zhang XY. 1,3-Butadiene: a ubiquitous environmental mutagen and its associations with diseases. Genes Environ 2022; 44:3. [PMID: 35012685 PMCID: PMC8744311 DOI: 10.1186/s41021-021-00233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
1,3-Butadiene (BD) is a petrochemical manufactured in high volumes. It is a human carcinogen and can induce lymphohematopoietic cancers, particularly leukemia, in occupationally-exposed workers. BD is an air pollutant with the major environmental sources being automobile exhaust and tobacco smoke. It is one of the major constituents and is considered the most carcinogenic compound in cigarette smoke. The BD concentrations in urban areas usually vary between 0.01 and 3.3 μg/m3 but can be significantly higher in some microenvironments. For BD exposure of the general population, microenvironments, particularly indoor microenvironments, are the primary determinant and environmental tobacco smoke is the main contributor. BD has high cancer risk and has been ranked the second or the third in the environmental pollutants monitored in most urban areas, with the cancer risks exceeding 10-5. Mutagenicity/carcinogenicity of BD is mediated by its genotoxic metabolites but the specific metabolite(s) responsible for the effects in humans have not been determined. BD can be bioactivated to yield three mutagenic epoxide metabolites by cytochrome P450 enzymes, or potentially be biotransformed into a mutagenic chlorohydrin by myeloperoxidase, a peroxidase almost specifically present in neutrophils and monocytes. Several urinary BD biomarkers have been developed, among which N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine is the most sensitive and is suitable for biomonitoring BD exposure in the general population. Exposure to BD has been associated with leukemia, cardiovascular disease, and possibly reproductive effects, and may be associated with several cancers, autism, and asthma in children. Collectively, BD is a ubiquitous pollutant that has been associated with a range of adverse health effects and diseases with children being a subpopulation with potentially greater susceptibility. Its adverse effects on human health may have been underestimated and more studies are needed.
Collapse
Affiliation(s)
- Wan-Qi Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
12
|
Abstract
SARS-CoV-2 was discovered in Wuhan (Hubei) in late 2019 and covered the globe by March 2020. To prevent the spread of the SARS-CoV-2 outbreak, China imposed a countrywide lockdown that significantly improved the air quality. To investigate the collective effect of SARS-CoV-2 on air quality, we analyzed the ambient air quality in five provinces of northwest China (NWC): Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia (NX) and Qinghai (QH), from January 2019 to December 2020. For this purpose, fine particulate matter (PM2.5), coarse particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) were obtained from the China National Environmental Monitoring Center (CNEMC). In 2020, PM2.5, PM10, SO2, NO2, CO, and O3 improved by 2.72%, 5.31%, 7.93%, 8.40%, 8.47%, and 2.15%, respectively, as compared with 2019. The PM2.5 failed to comply in SN and XJ; PM10 failed to comply in SN, XJ, and NX with CAAQS Grade II standards (35 µg/m3, 70 µg/m3, annual mean). In a seasonal variation, all the pollutants experienced significant spatial and temporal distribution, e.g., highest in winter and lowest in summer, except O3. Moreover, the average air quality index (AQI) improved by 4.70%, with the highest improvement in SN followed by QH, GS, XJ, and NX. AQI improved in all seasons; significant improvement occurred in winter (December to February) and spring (March to May) when lockdowns, industrial closure etc. were at their peak. The proportion of air quality Class I improved by 32.14%, and the number of days with PM2.5, SO2, and NO2 as primary pollutants decreased while they increased for PM10, CO, and O3 in 2020. This study indicates a significant association between air quality improvement and the prevalence of SARS-CoV-2 in 2020.
Collapse
|