1
|
Grussy K, Łaska M, Moczurad W, Król-Kulikowska M, Ściskalska M. The importance of polymorphisms in the genes encoding glutathione S-transferase isoenzymes in development of selected cancers and cardiovascular diseases. Mol Biol Rep 2023; 50:9649-9661. [PMID: 37819495 PMCID: PMC10635984 DOI: 10.1007/s11033-023-08894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Glutathione S-transferases are a family of enzymes, whose main role is to detoxify cells from many exogenous factors, such as xenobiotics or carcinogens. It has also been proven that changes in the genes encoding these enzymes may affect the incidence of selected cancers and cardiovascular diseases. The aim of this study was to review the most important reports related to the role of glutathione S-transferases in the pathophysiology of two of the most common diseases in modern society - cancers and cardiovascular diseases. It was shown that polymorphisms in the genes encoding glutathione S-transferases are associated with the development of these diseases. However, depending on the ethnic group, the researchers obtained divergent results related to this field. In the case of the GSTP1 A/G gene polymorphism was shown an increased incidence of breast cancer in Asian women, while this relationship in European and African women was not found. Similarly. In the case of cardiovascular diseases, the differences in the influence of GSTM1, GSTT1, GSTP1 and GSTA1 polymorphisms on their development or lack of it depending on the continent were shown. These examples show that the development of the above-mentioned diseases is not only influenced by genetic changes, but their pathophysiology is more complex. The mere presence of a specific genotype within a studied polymorphism may not predispose to cancer, but in combination with environmental factors, which often depend on the place of residence, it may elevate the chance of developing the selected disease.
Collapse
Affiliation(s)
- Katarzyna Grussy
- Student Society of Laboratory Diagnosticians, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Magdalena Łaska
- Student Society of Laboratory Diagnosticians, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Wiktoria Moczurad
- Student Society of Laboratory Diagnosticians, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland.
| | - Milena Ściskalska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| |
Collapse
|
2
|
Singh VK, Kainat KM, Sharma PK. Crosstalk between epigenetics and tumor promoting androgen signaling in prostate cancer. VITAMINS AND HORMONES 2023; 122:253-282. [PMID: 36863797 DOI: 10.1016/bs.vh.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the major health burdens among all cancer types in men globally. Early diagnosis and efficacious treatment options are highly warranted as far as the incidence of PCa is concerned. Androgen-dependent transcriptional activation of androgen receptor (AR) is central to the prostate tumorigenesis and therefore hormonal ablation therapy remains the first line of treatment for PCa in the clinics. However, the molecular signaling engaged in AR-dependent PCa initiation and progression is infrequent and diverse. Moreover, apart from the genomic changes, non-genomic changes such as epigenetic modifications have also been suggested as critical regulator of PCa development. Among the non-genomic mechanisms, various epigenetic changes such as histones modifications, chromatin methylation and noncoding RNAs regulations etc. play decisive role in the prostate tumorigenesis. Given that epigenetic modifications are reversible using pharmacological modifiers, various promising therapeutic approaches have been designed for the better management of PCa. In this chapter, we discuss the epigenetic control of tumor promoting AR signaling that underlies the mechanism of prostate tumorigenesis and progression. In addition, we have discussed the approaches and opportunities to develop novel epigenetic modifications based therapeutic strategies for targeting PCa including castrate resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - K M Kainat
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Association of Androgen-Receptor Gene Mutations with the Copy Number of Androgen-Receptor Silk Protein A Complex and Glutathione-S-Transferases T1 and M1 in Prostate Cancer Patients. Genet Res (Camb) 2023; 2023:5956951. [PMID: 36824501 PMCID: PMC9943596 DOI: 10.1155/2023/5956951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Objective The purpose of our work was to explore the association of mutations in the androgen receptor gene and copy numbers of the androgen-receptor silk protein A complex with glutathione-S-transferases T1 and M1 in prostate cancer patients. Materials and Methods Eighty-five patients with PC and 85 healthy controls were included in the study. Fasting peripheral venous blood was collected, whole blood genomic DNA was extracted, and AR gene-receptor genotype was detected by a high-resolution melting curve analysis detection technology. Expression levels of androgen receptor (AR) and filamin protein A (FlnA) were detected by Western blotting. RT-PCR was used to detect the copy number of T1 and M1 glutathione-S-transferases. Results The wild-type androgen receptor gene rs5918762 is of TT type. The frequencies of CC and TC genes in the prostate cancer group were significantly higher than those in the normal control group (P < 0.05). Compared with TT-type PC patients, PC patients with TC-type and CC-type had higher expression levels of sex hormone receptor silk protein A complex and higher copy numbers of GSTT1 and GSTM1 (P < 0.05). Androgen-receptor gene mutation (T ⟶ C) was significantly positively correlated with the expression level of androgen-receptor silk protein A complex and the copy number of GSTT1 and GSTM1. Conclusion Androgen-receptor gene polymorphisms were significantly associated with expression levels of androgen receptor complex A and silk proteins, and copy numbers of T1 and M1 glutathione-S-transferases. A combination of four factors can be used to identify prostate cancer susceptibility and disease progression.
Collapse
|
4
|
Chu Q, Gu X, Zheng Q, Guo Z, Shan D, Wang J, Zhu H. Long noncoding RNA SNHG4: a novel target in human diseases. Cancer Cell Int 2021; 21:583. [PMID: 34717631 PMCID: PMC8557547 DOI: 10.1186/s12935-021-02292-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have attracted great attention from researchers. LncRNAs are non-protein-coding RNAs of more than 200 nucleotides in length. Multiple studies have been published on the relationship between lncRNA expression and the progression of human diseases. LncRNA small nucleolar RNA host gene 4 (SNHG4), a member of the lncRNA SNHG family, is abnormally expressed in a variety of human diseases, including gastric cancer, renal cell carcinoma, glioblastoma, neuroblastoma, prostate cancer, colorectal cancer, osteosarcoma, cervical cancer, liver cancer, lung cancer, non-small-cell lung cancer, neonatal pneumonia, diabetic retinopathy, neuropathic pain, acute cerebral infarction, acute myeloid leukaemia, and endometriosis. In this paper, the structure of SNHG4 is first introduced, and then studies in humans, animal models and cells are summarized to highlight the expression and function of SNHG4 in the above diseases. In addition, the specific mechanism of SNHG4 as a competing endogenous RNA (ceRNA) is discussed. The findings indicate that SNHG4 can be used as a biomarker for disease prognosis evaluation and as a potential target for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Zixuan Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Dandan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
5
|
Sobha SP, Ebenezar K. Susceptibility of Glutathione--S-Transferase Polymorphism to CVD Development in Type 2 Diabetes Mellitus - A Review. Endocr Metab Immune Disord Drug Targets 2021; 22:225-234. [PMID: 34496736 DOI: 10.2174/1871530321666210908115222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/06/2022]
Abstract
BACKGROUND Metabolic disorder affects normal homeostasis and can lead to the development of diseases. Diabetes mellitus is the most common metabolic disorder, and a cluster of metabolic conditions can lead to cardiovascular disease (CVD) development. Diabetes mellitus and CVD are closely related, with oxidative stress, playing a major role in the pathophysiology. Glutathione-S-Transferases (GST) potentially play an important role by reducing oxidative stress and is found to be the underlying pathophysiology in the development of diabetes, cardiovascular diseases (CVD), etc. Objectives: In this review, the role of GST genetic variant in the development of diabetes mellitus, CVD and diabetic vascular complications has been focused. RESULTS Based on the literature, it is evident that the GST can act as an important biochemical tool providing significant evidence regarding oxidative stress predominant in the development of diseases. Analysis of GST gene status, particularly detection of GSTM1 and GSTT1 null mutations and GSTP1 polymorphism, have clinical importance. CONCLUSION The analysis of GST polymorphism may help identify the people at risk and provide proper medical management. Genotyping of GST gene would be a helpful biomarker for early diagnosis of CVD development in DM and also in CVD cases. More studies focusing on the association of GST polymorphism with CVD development in diabetic patients will help us determine the pathophysiology better.
Collapse
Affiliation(s)
- Santhi Priya Sobha
- Natural Medicine and Molecular Physiology Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam-603103, Chengalpattu Dt., TN. India
| | - Kumar Ebenezar
- Natural Medicine and Molecular Physiology Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam-603103, Chengalpattu Dt., TN. India
| |
Collapse
|