1
|
Zhao X, Zhuang J, Zhang F, Li H, Yu J, Wang C, Lv T, Li Q, Zhang J. Effects of compatibility of Clostridium butyricum and Bacillus subtilis on growth performance, lipid metabolism, antioxidant status and cecal microflora of broilers during the starter phase. Anim Biosci 2024; 37:1933-1944. [PMID: 38938023 PMCID: PMC11541026 DOI: 10.5713/ab.24.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE This study aimed to determine the effects of compatibility of Clostridium butyricum and Bacillus subtilis on growth performance, lipid metabolism, antioxidant status and cecal microflora of broilers during the starter phase. METHODS A total of 600 1-day-old Ross 308 broilers were randomly divided into two groups with six replicates in each group. Chickens in the control group were fed a basal diet, while chickens in the experimental group were fed a diet supplemented with 2×108 colony forming units (CFU)/kg of C. butyricum and 1×109 CFU/kg of B. subtilis. The experimental period was 21 days. RESULTS Addition of C. butyricum and B. subtilis significantly increased (p<0.05) the body weight and liver nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) activity of broilers, enhanced (p<0.05) the average daily gain and average daily feed intake of broilers. However, the addition of C. butyricum and B. subtilis did not significantly affect the concentrations of triglyceride and total cholesterol in the serum, the activities of fatty acid synthase and acetyl-CoA carboxylase in the liver, the total antioxidant capacity, glutathione peroxidase activity and malondialdehyde content in the serum and liver. Besides, microbial analysis revealed that supplementation of C. butyricum and B. subtilis increased (p<0.05) the abundance of Firmicutes such as CHKCI001 and Faecalibacterium, decreased (p<0.05) the abundance of Bacteroidota such as Bacteroides and Alistipes. Spearman correlation analysis confirmed that the above cecal microbiota were closely related to the growth performance of broilers (p<0.05). In addition, simultaneous supplementation of C. butyricum and B. subtilis significant affected (p<0.05) 33 different functional pathways such as lipid metabolism and carbohydrate metabolism. This explains the phenomenon of increased growth performance and liver NADP-ME activity in the probiotics group. CONCLUSION The compatibility of C. butyricum and B. subtilis could improve the growth of broilers during the starter phase by changing the cecal microflora.
Collapse
Affiliation(s)
- Xu Zhao
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000,
China
| | - Jiarong Zhuang
- Linyi Backbone Biotechnology Co., Ltd., Linyi 276036,
China
| | - Faling Zhang
- Shandong Lonct Enzymes Co., Ltd., Linyi 276400,
China
| | - Hongtao Li
- Linyi Backbone Biotechnology Co., Ltd., Linyi 276036,
China
| | - Juan Yu
- Linyi Backbone Biotechnology Co., Ltd., Linyi 276036,
China
| | - Chengli Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000,
China
| | - Tengjiao Lv
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000,
China
| | - Qingzhen Li
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000,
China
| | - Jimei Zhang
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000,
China
| |
Collapse
|
2
|
Kwon SH, Lee JH, Kim HW, Kim DY, Kil DY. Effect of increasing supplementation of dietary glycine on growth performance, meat quality, liver characteristics, and intestinal health in broiler chickens raised under heat stress conditions. Poult Sci 2024; 103:104352. [PMID: 39383666 PMCID: PMC11490916 DOI: 10.1016/j.psj.2024.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
The current study aimed to investigate the effect of increasing supplementation of dietary glycine (Gly) on growth performance, meat quality, liver characteristics, and intestinal health in broiler chickens raised under heat stress (HS) conditions. A total of one thousand six hundred 25-d-old broiler chickens were randomly allotted to 1 of 5 dietary treatments with 8 replicates. Each replicate comprised 20 male and 20 female birds. A negative control (NC) diet was prepared to meet or exceed energy and nutrient requirement estimates, whereas a positive control (PC) diet was formulated to contain increasing concentrations of AMEn by 50 kcal/kg as well as those of digestible amino acids, total Ca, and available P by 10% compared with the respective concentrations in the NC diet. Three additional diets were prepared by supplementing the NC diet with 0.4, 0.8, or 1.6% Gly. All chickens were raised under cyclic HS conditions at 29°C ± 0.89°C for 10 h/d and 23°C ± 1.45°C for the remaining time over an 18-d feeding trial. Results indicated that broiler chickens fed the NC diet had a greater (P < 0.05) FCR than those fed the PC diet under HS conditions. Increasing supplementation of up to 1.6% Gly in diets decreased (linear, P < 0.001) FCR in broiler chickens. Increasing supplementation of dietary Gly tended to increase (linear, P = 0.070) water holding capacity in the breast meat. Increasing supplementation of dietary Gly decreased (linear, P < 0.05) serum aspartate aminotransferase concentrations and tended to decrease blood heterophil:lymphocyte (linear, P = 0.083) and liver malondialdehyde concentrations (quadratic, P = 0.084). A tendency for increased villus height (linear, P = 0.086) and a significant increase in villus height:crypt depth ratio and goblet cell numbers (linear, P < 0.05) were identified following increasing Gly supplementation. In conclusion, increasing supplementation of dietary Gly improved feed efficiency, meat quality, liver health, and intestinal morphology possibly by mitigating oxidative stress and stress response in broiler chickens raised under HS conditions.
Collapse
Affiliation(s)
- Sung Hoon Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Ji Hye Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
3
|
Li F, Xu J, Xie M, Fei D, Zhou Y, Li X, Guang Y, Gong L, Hu L, Feng F. Regulatory effects of tea polysaccharides on hepatic inflammation, gut microbiota dysbiosis, and serum metabolomic signatures in beef cattle under heat stress. Front Physiol 2024; 15:1460414. [PMID: 39308975 PMCID: PMC11413490 DOI: 10.3389/fphys.2024.1460414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Background Long-term heat stress (HS) severely restricts the growth performance of beef cattle and causes various health problems. The gut microbiota plays a crucial role in HS-associated inflammation and immune stress involving lymphocyte function. This study investigated the effects of dietary tea polysaccharide (TPS), a natural acidic glycoprotein, on HS-induced anorexia, inflammation, and gut microbiota dysbiosis in Simmental beef cattle. Methods The cattle were divided into two groups, receiving either normal chow or normal chow plus TPS (8 g/kg, 0.8%). Transcriptome sequencing analysis was used to analysis the differential signaling pathway of liver tissue. 16S rDNA sequencing was performed to analysis gut microbiota of beef cattle. Serum metabolite components were detected by untargeted metabolomics analysis. Results Hepatic transcriptomics analysis revealed that differentially expressed genes in TPS-fed cattle were primarily enriched in immune processes and lymphocyte activation. TPS administration significantly reduced the expression of the TLR4/NF-κB inflammatory signaling pathway, alleviating HS-induced hepatic inflammation. Gut microbiota analysis revealed that TPS improved intestinal homeostasis in HS-affected cattle by increasing bacterial diversity and increasing the relative abundances of Akkermansia and Alistipes while decreasing the Firmicutes-to-Bacteroidetes ratio and the abundance of Agathobacter. Liquid chromatography-tandem mass spectrometry (LC‒MS/MS) analysis indicated that TPS significantly increased the levels of long-chain fatty acids, including stearic acid, linolenic acid, arachidonic acid, and adrenic acid, in the serum of cattle. Conclusion These findings suggest that long-term consumption of tea polysaccharides can ameliorate heat stress-induced hepatic inflammation and gut microbiota dysbiosis in beef cattle, suggesting a possible liver-gut axis mechanism to mitigate heat stress.
Collapse
Affiliation(s)
- Fan Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Jun Xu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Min Xie
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Dan Fei
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yaomin Zhou
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Xiong Li
- Pingxiang Center of Agricultural Science and Technology Research, Pingxiang, China
| | - Yelan Guang
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Lihui Gong
- Institute of Quality Safety and Standards of agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Lizhen Hu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Fan Feng
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| |
Collapse
|
4
|
Chen H, Wang F, Wu X, Yuan S, Dong H, Zhou C, Feng S, Zhao Z, Si L. Chronic Heat Stress Induces Oxidative Stress and Induces Inflammatory Injury in Broiler Spleen via TLRs/MyD88/NF-κB Signaling Pathway in Broilers. Vet Sci 2024; 11:293. [PMID: 39057977 PMCID: PMC11281475 DOI: 10.3390/vetsci11070293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The spleen is the largest peripheral immune organ of the organism, accounting for 25% of the total lymphoid tissue of the body. During HS, the spleen is damaged due to the elevated environment, which seriously affects life performance and broilers' health. This study aimed to investigate the mechanism of chronic HS damage to broiler spleen tissues. The broilers were typically raised until they reached 21 days of age, after which they were arbitrarily allocated into two groups: an HS group and a cntrol group. The HS group was subjected to a temperature of 35 °C for 10 h each day, starting at 21 days of age. At 35 and 42 days of age, spleen and serum samples were obtained from the broilers. The results showed that after HS, a significant decrease in productive performance was observed at 42 days of age (p < 0.01), and the spleen index, and bursa index were significantly decreased (p < 0.01). T-AOC of the organism was significantly decreased (p < 0.05), GSH-PX, SOD, and CAT antioxidant factors were significantly decreased (p < 0.01), and MDA was significantly elevated (p < 0.01). HS also led to a significant increase in cytokines IL-6, TNF-α, and INF-γ and a significant decrease in IL-4 in the spleen. The histopathologic results showed that the spleen's red-white medulla was poorly demarcated. The cells were sparsely arranged after HS. After HS, the expression of TLRs, MYD88, and NF-κB genes increased significantly. The expression of HSP70 increased significantly, suggesting that HS may induces an inflammatory response in broiler spleens through this signaling pathway, which may cause pathological damage to broiler spleens, leading to a decrease in immune function and progressively aggravating HS-induced damage with the prolongation of HS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lifang Si
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
5
|
Guo B, Yan L, Tang Y, Du J, Dai Z, Liu J, Lei M, Hou Z, Zhu H. Green Light Mitigates Cyclic Chronic Heat-Stress-Induced Liver Oxidative Stress and Inflammation via NF-κB Pathway Inhibition in Geese. Antioxidants (Basel) 2024; 13:772. [PMID: 39061842 PMCID: PMC11274274 DOI: 10.3390/antiox13070772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Heat stress (HS) induces various physiological disorders in poultry, negatively impacting feed intake, feed efficiency, and growth performance. Considering the documented anti-stress and growth-promoting benefits of monochromatic green light in poultry, we aimed to investigate its effects on cyclic chronic HS-induced oxidative stress (OS) and inflammation in geese. We established three treatment groups-geese exposed to white light (W), white light with HS treatment (WH), and green light with HS treatment (GH)-treated over a six-week period with daily HS sessions. The results revealed that cyclic chronic HS induced liver OS and inflammation, leading to hepatocellular injury and reduced growth performance and feed intake. In comparison, the growth performance of geese under green light significantly improved. Additionally, liver index, serum, liver malondialdehyde (MDA), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumour necrosis factor-α (TNF-α) levels were reduced. Serum total antioxidant capacity (T-AOC), liver catalase (CAT), and superoxide dismutase (SOD) activity were enhanced, reducing hepatic OS and inflammation. Liver transcriptomic analysis indicated that green light alleviates cyclic chronic HS-induced liver injury and promotes geese growth performance by suppressing NF-κB pathway activation.
Collapse
Affiliation(s)
- Binbin Guo
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Leyan Yan
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yi Tang
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Life Science, Jiangsu University, Zhenjiang 212000, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong 212400, China;
| | - Zichun Dai
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jie Liu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingming Lei
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhuocheng Hou
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huanxi Zhu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (L.Y.); (Y.T.); (Z.D.); (J.L.); (M.L.)
- Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
6
|
Wang C, Sun D, Deng Q, Sun L, Hu L, Fang Z, Zhao J, Gooneratne R. Elephantopus scaber L. Polysaccharides Alleviate Heat Stress-Induced Systemic Inflammation in Mice via Modulation of Characteristic Gut Microbiota and Metabolites. Nutrients 2024; 16:262. [PMID: 38257155 PMCID: PMC10819175 DOI: 10.3390/nu16020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Elephantopus scaber L. (ESL) is a Chinese herb that is used both as a food and medicine, often being added to soups in summer in south China to relieve heat stress (HS), but its exact mechanism of action is unknown. In this study, heat-stressed mice were gavaged with ESL polysaccharides (ESLP) at 0, 150, 300, and 450 mg/kg/d-1 (n = 5) for seven days. The gut microbiota composition, short-chain fatty acids (SCFAs), seven neurotransmitters in faeces, expression of intestinal epithelial tight junction (TJ) proteins (Claudin-1, Occludin), and serum inflammatory cytokines were measured. The low dose of ESLP (ESLL) improved the adverse physiological conditions; significantly reduced the cytokines (TNF-α, IL-1β, IL-6) and lipopolysaccharide (LPS) levels (p < 0.05); upregulated the expression of Claudin-1; restored the gut microbiota composition including Achromobacter and Oscillospira, which were at similar levels to those in the normal control group; significantly increased beneficial SCFAs like butyric acid and 5-HT levels in the faeces of heat-stressed mice; and significantly decreased the valeric acid and glutamic acid level. The level of inflammatory markers significantly correlated with the above-mentioned indicators (p < 0.05). Thus, ESLL reduced the HS-induced systemic inflammation by optimizing gut microbiota (Achromobacter, Oscillospira) abundance, increasing gut beneficial SCFAs like butyric acid and 5-HT levels, and reducing gut valeric and glutamic acid levels.
Collapse
Affiliation(s)
- Chen Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.W.); (D.S.); (L.S.); (L.H.); (Z.F.)
| | - Dongfang Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.W.); (D.S.); (L.S.); (L.H.); (Z.F.)
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.W.); (D.S.); (L.S.); (L.H.); (Z.F.)
| | - Lijun Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.W.); (D.S.); (L.S.); (L.H.); (Z.F.)
| | - Lianhua Hu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.W.); (D.S.); (L.S.); (L.H.); (Z.F.)
| | - Zhijia Fang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.W.); (D.S.); (L.S.); (L.H.); (Z.F.)
| | - Jian Zhao
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand;
| |
Collapse
|
7
|
Hatipoglu D, Senturk G, Aydin SS, Kirar N, Top S, Demircioglu İ. Rye-grass-derived probiotics alleviate heat stress effects on broiler growth, health, and gut microbiota. J Therm Biol 2024; 119:103771. [PMID: 38134538 DOI: 10.1016/j.jtherbio.2023.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
The primary aim of this study was to assess the impact of liquid (S-LAB) and lyophilized (L-LAB) probiotics sourced from Rye-Grass Lactic Acid Bacteria on broilers experiencing heat stress. The study involved 240 broiler chicks divided into six groups. These groups included a negative control (Control) with broilers raised at a normal temperature (24 °C) on a basal diet, and positive control groups (S-LAB and L-LAB) with broilers under normal temperature receiving a lactic acid bacteria supplement (0.5 mL/L) from rye-grass in their drinking water. The heat stress group (HS) comprised broilers exposed to cyclic heat stress (5-7 h per day at 34-36 °C) on a basal diet, while the heat stress and probiotic groups (S-LAB/HS and L-LAB/HS) consisted of broilers under heat stress supplemented with the rye-grass-derived lactic acid bacteria. Results indicated that heat stress without supplementation (HS) led to reduced body weight gain, T3 levels, citrulline, and growth hormone levels, along with an increased feed conversion ratio, serum corticosterone, HSP70, ALT, AST, and leptin levels. Heat stress also negatively impacted cecal microbiota, decreasing lactic acid bacteria (LABC) while increasing E. coli and coliform bacteria (CBC) counts. Probiotic supplements (S-LAB/HS and L-LAB/HS) mitigated these effects by enhancing broilers' resilience to heat stress. In conclusion, rye grass-derived S-LAB and L-LAB probiotics can effectively support broiler chickens under heat stress, promoting growth, liver function, hormonal balance, gut health, and cecal microbiome ecology. These benefits are likely mediated through improved gut health.
Collapse
Affiliation(s)
- Durmus Hatipoglu
- Selcuk University, Faculty of Veterinary Medicine, Department of Physiology, 42130, Konya, Turkey.
| | - Goktug Senturk
- Aksaray University, Faculty of Veterinary Medicine, Department of Physiology, 68100, Aksaray, Turkey
| | - Sadik Serkan Aydin
- Harran University, Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, 63200, Şanlıurfa, Turkey
| | - Nurcan Kirar
- Harran University, Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, 63200, Şanlıurfa, Turkey
| | - Sermin Top
- Harran University, Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, 63200, Şanlıurfa, Turkey
| | - İsmail Demircioglu
- Harran University, Faculty of Veterinary Medicine, Department of Anatomy, 63200, Sanliurfa, Turkey
| |
Collapse
|
8
|
Wu XY, Wang FY, Chen HX, Dong HL, Zhao ZQ, Si LF. Chronic heat stress induces lung injury in broiler chickens by disrupting the pulmonary blood-air barrier and activating TLRs/NF-κB signaling pathway. Poult Sci 2023; 102:103066. [PMID: 37769490 PMCID: PMC10539940 DOI: 10.1016/j.psj.2023.103066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 10/02/2023] Open
Abstract
As an important respiratory organ, the lung is susceptible to damage during heat stress due to the accelerated breathing frequency caused by an increase in environmental temperature. This can affect the growth performance of animals and endanger their health. This study aimed to explore the mechanism of lung tissue damage caused by heat stress. Broilers were randomly divided into a control group (Control) and a heat stress group (HS). The HS group was exposed to 35°C heat stress for 12 h per d from 21-days old, and samples were taken from selected broilers at 28, 35, and 42-days old. The results showed a significant increase in lactate dehydrogenase (LDH) activity in the serum and myeloperoxidase (MPO) activity in the lungs of broiler chickens across all 3 age groups after heat stress (P < 0.01), while the total antioxidant capacity (T-AOC) was significantly enhanced at 35-days old (P < 0.01). Heat stress also led to significant increases in various proinflammatory factors in serum and expression levels of HSP60 and HSP70 in lung tissue. Histopathological results showed congestion and bleeding in lung blood vessels, shedding of pulmonary epithelial cells, and a large amount of inflammatory infiltration in the lungs after heat stress. The mRNA expression of TLRs/NF-κB-related genes showed an upward trend (P < 0.05) after heat stress, while the mRNA expression of MLCK, a gene related to pulmonary blood-air barrier, significantly increased after heat stress, and the expression levels of MLC, ZO-1, and occludin decreased in contrast. This change was also confirmed by Western blotting, indicating that the pulmonary blood-air barrier is damaged after heat stress. Heat stress can cause damage to the lung tissue of broiler chickens by disrupting the integrity of the blood-air barrier and increasing permeability. This effect is further augmented by the activation of TLRs/NF-κB signaling pathways leading to an intensified inflammatory response. As heat stress duration progresses, broiler chickens develop thermotolerance, which gradually mitigates the damaging effects induced by heat stress.
Collapse
Affiliation(s)
- Xing-Yue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Fei-Yao Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Hao-Xiang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Hui-Li Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Zhan-Qin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Li-Fang Si
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, PR China.
| |
Collapse
|
9
|
Chen Y, Yu S, Zhang L, Xiao M, An L. Effects and Mechanisms Investigation of Heat Stress on Egg Yolk Quality in Huaixiang Chickens. Animals (Basel) 2023; 13:3513. [PMID: 38003131 PMCID: PMC10668872 DOI: 10.3390/ani13223513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this study was to examine the effects of high temperature on internal egg yolk quality parameters and their possible mechanisms in Huaixiang chickens. This study consisted of two treatments, and each treatment had six replicates with six birds per cage. A total of seventy-two 26-week-old female Huaixiang chickens were randomly divided into a normal-temperature group (NT) and a high-temperature group (HT) for 6 weeks. And these hens were exposed to 25 ± 2 °C and 32 ± 2 °C, respectively. Their relative humidity was maintained at 55-65%. The results showed that the HT group significantly reduced yolk weight, yolk color, and egg weight compared to the NT group (p < 0.05). Heat stress caused vacuolar degeneration of the liver and reduced the absolute liver weight (p < 0.05). Both yolk triglyceride (TG) and liver TG in the HT group were significantly higher than in the NT group (p < 0.05). However, the liver total cholesterol (TC) level in the HT group was remarkably lower than that in the NT group (p < 0.05). Additionally, heat stress remarkably enhanced SREBP-1c, ACACA, and FASN lipid metabolism-related gene mRNA expression levels in Huaixiang chicken liver after 6 weeks of heat exposure (p < 0.05). Furthermore, the HT group had remarkably reduced total amino acid, Cys, and Tyr levels in the yolk when compared with the NT group in our experiment (p < 0.05). In conclusion, heat stress causes egg yolk quality reduction and abnormal lipid metabolism in Huaixiang chickens. These findings provided novel insights into the role of high temperature on egg yolk parameters and the underlying mechanisms in Chinese indigenous laying hens.
Collapse
Affiliation(s)
| | | | | | | | - Lilong An
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.C.); (S.Y.); (L.Z.); (M.X.)
| |
Collapse
|
10
|
Lan R, Luo H, Wu F, Wang Y, Zhao Z. Chitosan Oligosaccharides Alleviate Heat-Stress-Induced Lipid Metabolism Disorders by Suppressing the Oxidative Stress and Inflammatory Response in the Liver of Broilers. Antioxidants (Basel) 2023; 12:1497. [PMID: 37627493 PMCID: PMC10451627 DOI: 10.3390/antiox12081497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Heat stress has been reported to induce hepatic oxidative stress and alter lipid metabolism and fat deposition in broilers. Chitosan oligosaccharides (COSs), a natural oligosaccharide, has anti-oxidant, anti-inflammatory, and lipid-lowering effects. This study is conducted to evaluate dietary COS supplementation on hepatic anti-oxidant capacity, inflammatory response, and lipid metabolism in heat-stressed broilers. The results indicate that heat-stress-induced poor (p < 0.05) growth performance and higher (p < 0.05) abdominal adiposity are alleviated by COS supplementation. Heat stress increases (p < 0.05) serum AST and ATL activity, serum and liver MDA, TG, TC, and LDL-C levels, and the expression of hepatic IL-1β, IL-6, SREBP-1c, ACC, and FAS, while it decreases (p < 0.05) serum SOD and CAT activity, liver GSH-Px and SOD activity, and the expression of hepatic Nrf2, GPX1, IL-10, MTTP, PPARα, and CPT1. Nevertheless, COS supplementation decreases (p < 0.05) serum AST and ATL activity, serum and liver MDA, TG, TC, and LDL-C levels, and the expression of hepatic IL-1β, IL-6, SREBP-1c, ACC, and FAS, while it increases (p < 0.05) serum SOD and CAT activity, liver GSH-Px activity, and the expression of hepatic Nrf2, CAT, IL-10, LPL, MTTP, PPARα, and CPT1. In conclusion, COS could alleviate heat-stress-induced lipid metabolism disorders by enhancing hepatic anti-oxidant and anti-inflammatory capacity.
Collapse
Affiliation(s)
| | | | | | | | - Zhihui Zhao
- Department of Animal Science and Technology, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.L.); (H.L.); (F.W.); (Y.W.)
| |
Collapse
|
11
|
Peng XY, Xing T, Li JL, Zhang L, Jiang Y, Gao F. Guanidinoacetic acid supplementation improves intestinal morphology, mucosal barrier function of broilers subjected to chronic heat stress. J Anim Sci 2023; 101:skac355. [PMID: 36283032 PMCID: PMC9831137 DOI: 10.1093/jas/skac355] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/23/2022] [Indexed: 01/13/2023] Open
Abstract
The current study is designed to investigate dietary guanidinoacetic acid (GAA) supplementation on the growth performance, intestinal histomorphology, and jejunum mucosal barrier function of broilers that are subjected to chronic heat stress (HS). A total of 192 male broilers (28-d old) were randomly allocated to four groups. A chronic HS model (at a temperature of 32 °C and 50%-60% relative humidity for 24 h daily) was applied in the experiment. Normal control (NC, ad libitum feeding, 22 °C), HS group (HS, ad libitum feeding, 32 °C), pair-fed group (PF, received food equivalent to that consumed by the HS group on the previous day, 22 °C), guanidinoacetic acid group (HG, ad libitum feeding, supplementing the basal diet with 0.6 g/kg GAA, 32 °C). The experiment lasted from 28 to 35 and 28 to 42 d of age of broilers. Our results showed that broilers subjected to HS had lower average daily feed intake and average daily gain (P < 0.05), higher feed-to-gain ratio and relative length of the small intestine (P < 0.05), as well as lower relative weight and weight per unit length of the small intestine (P < 0.05). HS damaged the small intestinal histomorphology by decreasing the small intestinal VH and the VH/CD (P < 0.05). Compared with the HS group, supplementation with 0.6 g/kg GAA increased jejunal VH and VH/CD (P < 0.05), but decreased relative weight and relative length of the small intestine (P < 0.05). Moreover, in comparison with NC, HS elevated intestinal permeability (D-Lactic acid concentration and diamine oxidase activity) and mRNA expression levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α (P < 0.05), reduced jejunal mucus thickness, number of goblet cells, IgA + cell density, and mucin2 mRNA expression level of broilers (P < 0.05). Compared with the HS group, dietary GAA elevated jejunal mucus thickness, goblet cell number and IgA+ cell density (P < 0.05), and up-regulated jejunal mRNA expression of interleukin-1β and tumor necrosis factor-α (P < 0.05). In conclusion, HS impaired growth performance, and the intestinal mucosal barrier function of broilers. Dietary supplementation with 0.6 g/kg GAA alleviated HS-induced histomorphology changes of small intestine and jejunal mucosal barrier dysfunction.
Collapse
Affiliation(s)
- Xu Y Peng
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Jiao L Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People’s Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
12
|
Liu YL, Ding KN, Shen XL, Liu HX, Zhang YA, Liu YQ, He YM, Tang LP. Chronic heat stress promotes liver inflammation in broilers via enhancing NF-κB and NLRP3 signaling pathway. BMC Vet Res 2022; 18:289. [PMID: 35871002 PMCID: PMC9308265 DOI: 10.1186/s12917-022-03388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background This study investigated the effects of chronic heat stress on liver inflammatory injury and its potential mechanisms in broilers. Chickens were randomly assigned to the 1-week control group (Control 1), 1-week heat stress group (HS1), 2-week control group (Control 2), and a 2-week heat stress group (HS2) with 15 replicates per group. Broilers in the heat stress groups were exposed to heat stress (35 ± 2 °C) for 8 h/d for 7 or 14 consecutive days, and the rest of 26 hours/day were kept at 23 ± 2 °C like control group broilers. Growth performance and liver inflammatory injury were examined for the analysis of liver injury. Results The results showed that heat stress for 2 weeks decreased the growth performance, reduced the liver weight (P < 0.05) and liver index (P < 0.05), induced obvious bleeding and necrosis points. Liver histological changes found that the heat stress induced the liver infiltration of neutrophils and lymphocytes in broilers. Serum levels of AST and SOD were enhanced in HS1 (P < 0.01, P < 0.05) and HS2 (P < 0.01, P < 0.05) group, compared with control 1 and 2 group broilers. The MDA content in HS1 group was higher than that of in control 1 group broilers (P < 0.05). Both the gene and protein expression levels of HSP70, TLR4 and NF-κB in the liver were significantly enhanced by heat stress. Furthermore, heat stress obviously enhanced the expression of IL-6, TNF-α, NF-κB P65, IκB and their phosphorylated proteins in the livers of broilers. In addition, heat stress promoted the activation of NLRP3 with increased NLRP3, caspase-1 and IL-1β levels. Conclusions These results suggested that heat stress can cause liver inflammation via activation of the TLR4-NF-κB and NLRP3 signaling pathways in broilers. With the extension of heat stress time, the effect of heat stress on the increase of NF-κB and NLRP3 signaling pathways tended to slow down. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03388-0.
Collapse
|
13
|
Cao X, Guo L, Zhou C, Huang C, Li G, Zhuang Y, Yang F, Liu P, Hu G, Gao X, Guo X. Effects of N-acetyl-l-cysteine on chronic heat stress-induced oxidative stress and inflammation in the ovaries of growing pullets. Poult Sci 2022; 102:102274. [PMID: 36402045 PMCID: PMC9673114 DOI: 10.1016/j.psj.2022.102274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022] Open
Abstract
The aims of this study were to investigate the effects of supplemental N-acetyl-l-cysteine (NAC) on chronic heat stress-induced oxidative stress and inflammation in the ovaries of growing pullets. A total of 120, 12-wk-old, Hy-Line Brown hens were randomly separated into 4 groups with 6 replicates of 5 birds in each group for 21 d. The 4 treatments were as follows: the CON group and CN group were supplemented with basal diet or basal diet with 1 g/kg NAC, respectively; and the HS group and HSN group were heat-stressed groups supplemented with basal diet or basal diet with 1 g/kg NAC, respectively. The results indicated that the ovaries suffered pathological damage due to chronic heat stress and that NAC effectively ameliorated these changes. Compared with the HS group, antioxidant enzyme activities (including SOD, GSH-Px, CAT, and T-AOC) were enhanced, while the MDA contents and the expression levels of HSP70 were decreased in the HSN group. In addition, NAC upregulated the expression levels of HO-1, SOD2, and GST by upregulating the activity of Nrf2 at different time points to mitigate oxidative stress caused by heat exposure. Simultaneously, NAC attenuated chronic heat stress-induced NF-κB pathway activation and decreased the expression levels of the proinflammatory cytokines IL-8, IL-18, TNF-α, IKK-α, and IFN-γ. Cumulatively, our results indicated that NAC could ameliorate chronic heat stress-induced ovarian damage by upregulating the antioxidative capacity and reducing the secretion of proinflammatory cytokines.
Collapse
|
14
|
Effects of Dietary Macleaya cordata Extract on Growth Performance, Biochemical Indices, and Intestinal Microbiota of Yellow-Feathered Broilers Subjected to Chronic Heat Stress. Animals (Basel) 2022; 12:ani12172197. [PMID: 36077916 PMCID: PMC9454434 DOI: 10.3390/ani12172197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the effect of dietary Macleaya cordata extract (MCE) supplementation on the growth performance, serum parameters, and intestinal microbiota of yellow-feather broilers under heat stress. A total of 216 yellow-feather broilers (28-days-old) were randomly allotted into three groups. A control group (CON) (24 ± 2 °C) and heat stress group (HS) (35 ± 2 °C) received a basal diet, and heat-stressed plus MCE groups (HS-MCE) (35 ± 2 °C) were fed the basal diet with 1000 mg/kg MCE for 14 consecutive days. The results revealed that MCE supplementation improved the final body weight, average daily feed intake, average daily gain, and spleen index when compared with the HS group (p < 0.05). In addition, MCE supplementation decreased (p < 0.05) the activities of aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and creatinine, and increased (p < 0.05) the glucose level and alkaline phosphatase activity in heat-stressed yellow-feathered broilers. Moreover, MCE treatment alleviated heat-stress-induced intestinal flora disturbances, decreased the Bacteroidota and Bacteroides relative abundances, and increased Firmicutes. A linear discriminant analysis effect size analysis found five differentially abundant taxa in the HS-MCE group, including Alistipes, Rikenellaceae, Mogibacterium, Butyrivibrio, and Lachnospira. These results suggest that MCE can alleviate HS-induced decline in growth performance by modulating blood biochemical markers and cecal flora composition in broilers.
Collapse
|
15
|
Tang LP, Liu YL, Zhang JX, Ding KN, Lu MH, He YM. Heat stress in broilers of liver injury Effects of heat stress on oxidative stress and autophagy in liver of broilers. Poult Sci 2022; 101:102085. [PMID: 36055022 PMCID: PMC9445375 DOI: 10.1016/j.psj.2022.102085] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
This study aimed to investigate the effect of chronic heat stress on oxidative stress in liver of broilers. In our study, chickens were randomly allocated to control 1 group (control 7 d), heat stress 1 group (HS1, 7 d), control 2 group (control 14 d) and heat stress 2 group (HS2, 14 d), with 30 replicates in each group. Broilers in heat stress groups exposed 8 h/day heat stress (35 ± 2°C) for 7 or 14 consecutive days, and the rest of time per day were kept at 23 ± 2℃ the same as control group broilers. Growth performance and the liver tissues were collected for histological observation and detection of organ index and liver redox status. The serum indicators (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) related to liver injury were determined. Moreover, Nrf2-related genes and protein expression levels in liver were measured. The results showed that in heat stress group broilers the body weight gain, feed conversion ratio, liver weight, and liver index were decreased, inflammatory cells infiltration in liver, and serum AST level was enhanced, compared with control group broilers. Moreover, the hepatic malondialdehyde (MDA) and superoxide dismutase (SOD) level were increased after 1 wk of heat stress. Nrf2, Sqstm1/p62, HO-1, and NQO1 mRNA expressions in the liver of broilers were decreased by heat stress. P62 and p-p62 protein expressions were significantly up-regulated, but Nrf2 and keap1 protein level was decreased in heat stress group broilers as compared to control group. The mRNA expression levels of Beclin1, LC3-I, LC3-II were down-regulated significantly with heat stress for 1 wk. The mRNA expression level of mTOR up-regulated after 2 wk of heat stress. In conclusion, heat stress induced liver injury of broilers by down-regulating Nrf2-keap1 signaling pathway and autophagy.
Collapse
|
16
|
Ma B, Xing T, Li J, Zhang L, Jiang Y, Gao F. Chronic heat stress causes liver damage via endoplasmic reticulum stress-induced apoptosis in broilers. Poult Sci 2022; 101:102063. [PMID: 36049294 PMCID: PMC9445382 DOI: 10.1016/j.psj.2022.102063] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Liver is a central metabolic organ, which is sensitive to heat stress. Liver damage affects animals' health and endangers the livestock and poultry industry. This study aimed to investigate the mechanism of chronic heat stress-induced liver damage in broiler chickens. Broilers were divided into 3 treatments: normal control group (NOR, 22°C), heat stress group (HS, 32°C) and pair-feeding group (PF, 22°C) for a 7-d and 14-d trial. The results showed that 7 d heat exposure caused microvesicular steatosis and reduced glutamine synthetase activity in broiler liver (P < 0.05). After 14 d of heat exposure, heat stress caused vacuolar degeneration and apoptosis in the liver; elevated liver relative weight and liver glutaminase activity as well as plasma ammonia level (P < 0.05). Additionally, heat stress enhanced GRP78 protein expression and the mRNA expressions of endoplasmic reticulum (ER) stress responses genes and apoptosis-related genes in broiler liver after 14 d of heat exposure (P < 0.05). In conclusion, chronic heat stress triggered ER stress-induced apoptosis and caused liver damage, which may compromise ammonia detoxification in broiler liver.
Collapse
Affiliation(s)
- Bingbing Ma
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jiaolong Li
- Institute of Agri-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, P.R. China.
| |
Collapse
|
17
|
Effect of Dietary Supplementation with Mannose Oligosaccharides on the Body Condition, Lactation Performance and Their Offspring of Heat-Stressed Sows. Animals (Basel) 2022; 12:ani12111397. [PMID: 35681861 PMCID: PMC9179884 DOI: 10.3390/ani12111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to determine the effects of dietary supplementation with mannose oligosaccharide (MOS) on the condition of the body and the reproductive and lactation performances of sows. Eighty pregnant sows were randomly assigned to four groups with a 2 × 2 factorial design: with or without MOS (1 g/kg) and with or without heat stress (HS) challenge. The temperature in the HS groups (HS and HM group) was controlled at 31.56 ± 1.22 °C, while the temperature in the active cooling (AC) groups (AC and AM group) was controlled at 23.49 ± 0.72 °C. The weight loss of sows in the AC group was significantly lower than that of sows in the HS group (p < 0.01). The weight and backfat thickness loss of sows supplemented with MOS displayed a downward trend. The average birth weight of the litter significantly increased in the HM group (basic diet + MOS) compared with the HS group (p < 0.05). The milk protein of sows significantly decreased under the HS condition at 2 and 12 h after delivery (p < 0.05). However, the milk immunoglobin G (IgG) of sows in the HS group increased significantly compared with that of sows in the HM group (p < 0.05) at 12 and 24 h after delivery. The levels of serum urea nitrogen (UREA) and glucose (GLU) decreased significantly under the HS condition (p < 0.05), while the level of interleukin-6 (IL-6) increased significantly under the HS condition (p < 0.05). Dietary supplementation with MOS also significantly reduced TNF-α under the AC conditions (p < 0.05). In conclusion, HS significantly affected the body condition, lactation performances and their offspring of sows. However, dietary supplementation with 1 g/kg MOS did not result in statistically significant changes.
Collapse
|
18
|
Wang Y, Sun W, Wu E, Wang K, Chen X, Cui Y, Zhang G, Lv F, Wang Y, Peng X, Si H. Polysaccharides From Abrus cantoniensis Hance Modulate Intestinal Microflora and Improve Intestinal Mucosal Barrier and Liver Oxidative Damage Induced by Heat Stress. Front Vet Sci 2022; 9:868433. [PMID: 35445100 PMCID: PMC9013755 DOI: 10.3389/fvets.2022.868433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
The protective effects of polysaccharides from Abrus cantoniensis Hance (ACP) on antioxidant capacity, immune function, the hypothalamus-pituitary-adrenal (HPA) axis balance, the intestinal mucosal barrier, and intestinal microflora in heat stress (HS)-induced heat-injured chickens are rarely reported. The purpose of this study was to investigate the protective effects of ACP on HS-injured chickens by enhancing antioxidant capacity and immune function, repairing the intestinal mucosal barrier, and regulating intestinal microflora. A total of 120 native roosters in Guangxi were randomly divided into 5 groups to evaluate the protective effect of ACP on chickens injured by HS (33 ± 2°C). The results showed that ACP increased the body weight and the immune organ index of heat-injured chickens, regulated the oxidative stress kinase secretion, and restored the antioxidant level of heat-injured birds. ACP significantly inhibited the secretion of corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (COR) and reversed the disorder of hormone levels caused by HS. ACP significantly regulated the secretion levels of immune cytokines and restored the immune function of the body. ACP significantly improved the intestinal morphology and increased the expression levels of tight junction proteins, which had a positive effect on protecting intestinal health. The results of high-throughput sequencing of the 16S rRNA gene showed that HS led to an increase in the abundance of harmful bacteria and an abnormal increase in the abundance of intestinal microflora and that ACP restored the HS-induced intestinal microflora imbalance. In conclusion, this study provides a scientific basis for ACP as an antioxidant activity enhancer to reduce liver injury, regulate intestinal microflora, and protect intestinal mucosal damage in chickens.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenjing Sun
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Enyun Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Geyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuhan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Yang C, Tang XW, Liu X, Yang H, Bin DM, Liu HJ, Tang QH, Tang JY. Effects of dietary oligosaccharides on serum biochemical index, intestinal morphology, and antioxidant status in broilers. Anim Sci J 2022; 93:e13679. [PMID: 35068019 DOI: 10.1111/asj.13679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
In order to determine the effect of different oligosaccharides on growth performance, intestinal health, and antioxidant status of broilers, 240 1-day-old XiangHuang broilers were randomly distributed to 4 treatments with 6 replicates each. Birds were fed corn-soybean-based diets (CON), and birds in xylo-oligosaccharides (XOS), fructo-oligosaccharides (FOS), and iso-maltooligosaccharide (IMO) groups were given the basal diet supplemented with 200 mg/kg XOS, FOS, and IMO, respectively. Result showed that average daily gain (ADG) during the whole 5 weeks in FOS group was greater than that in control group (p < 0.05). Both breast and thigh muscle percentages were higher for birds fed XOS versus CON (p < 0.05). Oligosaccharides supplementation increased jejunal villus height compared with control group (p < 0.05). Malondialdehyde (MDA) concentration in breast muscle was lower for birds fed diet containing FOS versus CON (p < 0.05). Activities of total superoxide dismutase (T-SOD) in serum and thigh muscle were higher in IMO than in control group (p < 0.05). Serum T-SOD and breast muscle's glutathione peroxidase (GSH-Px) activity was higher in XOS compared with control group (p < 0.05). Conclusion, dietary oligosaccharides such as XOS, FOS, and IMO could improve intestinal health and antioxidant ability of muscle without affect growth performance in broilers.
Collapse
Affiliation(s)
- Can Yang
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Institute of Bio‐Technology for Livestock Hengyang Normal University Hengyang China
| | - Xiao Wu Tang
- College of bioengineering Hunan Vocational Technical College of Environment and Biology Hengyang China
| | - Xian Liu
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Institute of Bio‐Technology for Livestock Hengyang Normal University Hengyang China
| | - Hai Yang
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Institute of Bio‐Technology for Livestock Hengyang Normal University Hengyang China
| | - Dong Mei Bin
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Institute of Bio‐Technology for Livestock Hengyang Normal University Hengyang China
| | - Hui Jing Liu
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Institute of Bio‐Technology for Livestock Hengyang Normal University Hengyang China
| | - Qing Hai Tang
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Institute of Bio‐Technology for Livestock Hengyang Normal University Hengyang China
| | - Jiao Yu Tang
- College of Life Sciences and Environment, College of NanYue, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Institute of Bio‐Technology for Livestock Hengyang Normal University Hengyang China
| |
Collapse
|
20
|
Chen Y, Cheng Y, Du M, Zhou Y. Protective effects of dietary synbiotic supplementation on meat quality and oxidative status in broilers under heat stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30197-30206. [PMID: 33586106 DOI: 10.1007/s11356-021-12535-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated protective effects of synbiotic on meat quality and oxidative status of breast muscle in heat-stressed broilers. Twenty 2-day-old broilers were allocated in a 2×2 factorial design, and the main factors consisted of synbiotic level (0 (basal diet) or 1.5 g/kg synbiotic) and temperature (thermoneutral or high temperature), resulting in 4 treatments. From 22 to 42 days, chickens were raised at thermoneutral temperature (22 °C) or subjected to cyclic high temperature (heat stress, HS) by keeping them at 32-33 °C for 8 h and 22 °C for rest 16 h daily. Cyclic HS decreased relative weight, redness (45 min), and pH values (45 min and 24 h) but increased contents of moisture and ether extract, lightness (45 min and 24 h), drip loss (24 h and 48 h), and cooking loss in breast muscle of broilers compared with those under thermoneutral temperature. It also increased malondialdehyde content and mRNA abundances of heat shock protein 70 (HSP70) and HSP90 but decreased glutathione (GSH) concentration and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), as well as mRNA abundances of nuclear factor (erythroid 2)-like 2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), GSH-Px, and copper and zinc superoxide dismutase in breast muscle in broilers. Dietary synbiotic supplementation was effective in increasing weight and reducing lightness (45 min), drip loss (24 h and 48 h) and cooking loss of breast muscle in heat-stressed broilers compared with those fed the basal diet. It also reduced malondialdehyde content and HSP70 mRNA abundance and increased GSH-Px activity, GSH content, and mRNA abundances of Nrf2, NQO1 and GSH-Px in breast muscle of heat-stressed broilers. These results suggested that synbiotic supplementation at a level of 1.5 g/kg could ameliorate compromised meat quality and oxidative status in broilers under cyclic HS.
Collapse
Affiliation(s)
- Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yefei Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mingfang Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|