1
|
Abomosallam M, Hendam BM, Shouman Z, Refaat R, Hashem NMA, Sakr SA, Wahed NM. Rutin Nanoparticles Alleviate Cadmium-Induced Oxidative and Immune Damage in Broilers' Bursa of Fabricius via Modulating Hsp70/TLR4/NF-κB Signaling Pathway. Biol Trace Elem Res 2025; 203:1016-1034. [PMID: 38703309 PMCID: PMC11750906 DOI: 10.1007/s12011-024-04199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a serious environmental pollutant affecting various tissues/organs in broilers and compromising their immunological function and productivity. Therefore, the current study aimed to investigate Cd-induced immunotoxicity and potential immunoprotective effect of rutin nanoparticles (RNPs) in the bursal tissue of broilers. A total number of 150 chicks from the Hubbard breed were randomly divided into 5 groups. Group I was fed on standard basal diet (SD) with normal drinking water (DW), Group II received SD containing RNPs (50 mg/kg feed) with DW, Group III fed on SD and DW containing Cd (150 mg/L), Group IV co-treated with rutin-enforced SD (50 mg/kg diet) and DW containing Cd (150 mg/L), and finally, Group V co-supplemented with RNP-enhanced SD (50 mg/kg diet) DW containing Cd (150 mg/L). Productive performance, economic efficiency, oxidative biomarkers, histopathological changes, and the expression level of TLR-4, HSP-70, caspase 3, NF-κB, Bcl-2, and Bax were assessed in the BF tissue. Cd led to severe production and economic losses in exposed birds with a marked surge of oxidative biomarkers, pro-inflammatory cytokines, and histopathological changes in the bursal tissue which could be explained through upregulation of the Hsp70/TLR4/NF-κB molecular pathway in the BF tissue. Meanwhile, RNPs could alleviate most of these changes and prevail optimistic immunomodulatory properties which subsequently could enhance broilers' productivity when incorporated in their diets.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Nada M A Hashem
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa A Sakr
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Noha M Wahed
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Wu C, Jiang Y, Zhou Z, Zhang Y, Zhou Y, Bai S, Li J, Wu F, Wang J, Lyu Y. Selenized Yeast Protects Against Cadmium-Induced Follicular Atresia in Laying Hens by Reducing Autophagy in Granulosa Cells. Curr Issues Mol Biol 2024; 46:13119-13130. [PMID: 39590376 PMCID: PMC11592890 DOI: 10.3390/cimb46110782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cadmium (Cd) exposure can induce follicular atresia and laying performance reduction in hens, which is linked to autophagy within the granulosa cells. Selenium (Se) can influence autophagy and counteract Cd toxicity. This study aimed to investigate the protective effect of Se on Cd-induced follicular atresia in laying hens. Sixty-four laying hens were randomly allocated into 4 treatments: control group: basal diet; Se group: basal diet + 0.4 mg/kg Se from selenized yeast; Cd group: basal diet + 25 mg/kg Cd from CdCl2; and Cd+Se group: basal diet + 25 mg/kg Cd + 0.4 mg/kg Se. Compared to the Cd group, Se supplementation alleviated the ovarian pathological changes and oxidative stress in the follicles, serum, liver, and ovary, increased daily laying production, ovarian weight and F5-F1 follicle amounts, serum levels of progesterone and oestradiol, and up-regulated mTOR expression (p < 0.05), while decreasing the count of autophagic vacuoles, ovarian atresia follicle numbers, and Cd deposition, and down-regulated expression levels of autophagy-related mRNAs, including ATG5, LC3-I, and LC3-II, Beclin1, and Dynein in the follicles (p < 0.05). In conclusion, 0.4 mg/kg Se supplementation protected against Cd-induced laying performance reduction and follicular atresia, which were achieved via decreasing oxidative stress and inhibiting mTOR pathways of autophagy.
Collapse
Affiliation(s)
- Caimei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yuxuan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Ziyun Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yuwei Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yixuan Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Fali Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yang Lyu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| |
Collapse
|
3
|
Zhang B, Li M, Zhou G, Gu X, Xie L, Zhao M, Xu Q, Tan G, Zhang N. ZnO-NPs alleviate aflatoxin B 1-induced hepatoxicity in ducklings by promoting hepatic metallothionein expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114826. [PMID: 36989561 DOI: 10.1016/j.ecoenv.2023.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin widely present in animal feed and human food, posing a serious threat to animal and human health. This study was aim to illustrate the mechanism of the protective role of MT against AFB1-induced hepatotoxicity, as well as to explore the feasibility of enhancing the tolerance of poultry to AFB1 by upregulating the expression of hepatic MT. After being exposed to AFB1 (50 ng/kg) primary duckling hepatocytes, the cell viability, the antioxidant index (SOD and GPx) and the mRNA levels of MT downstream genes (PTGR, p53, TrxR, AR and Bcl-2) significantly (p < 0.05) decreased, while the intracellular formation of (AFBO)-DNA adduct content, apoptosis, and MDA content significantly (p < 0.05) increased. Interestingly, overexpression of MT in primary duckling hepatocytes markedly (p < 0.05) reversed the detrimental impact of AFB1 and increased the expression of MT downstream genes. HepG2 cells were applied to study the mechanism how MT works to relieve the hepatic toxicity of AFB1. The ZnO-NPs (20 μg/mL) + AFB1 (20 μg/mL) group significantly (p < 0.05) increased the cell viability, the expression of NRF2, NQO1 and SOD, and expression of MT and MTF-1, as well as significantly (p < 0.05) decreased LDH, ROS and apoptotic rate, comparing with the AFB1 group. While joint treatment with AFB1 and ZnO-NPs, the hepatic toxicity exerted by AFB1 alone was reversed, along with the translocation of MTF-1 from the cytoplasm to the nucleus and upregulated its expression. Duckling trails were further carried out. A total number of 96 1-day-old healthy Cherry Valley commercial ducklings were randomly allocated according to a 2 by 2 factorial arrangement of treatments with the main factors including oral administration of AFB1 (0 vs. 40 μg/kg) and dietary supplementation of ZnO-NPs (0 vs. 60 mg/kg) for 7 days. It showed that AFB1 exposure caused body weight loss (p < 0.05), impaired liver structure and failure in hepatic function (activity of ALT, AST and concentration of TP and GLU) (p < 0.05), and decreases in antioxidant capacity(activity of SOD, CAT and concentration of GSH) (p < 0.05), along with the decrease in hepatic concentration of Zn, increase in expression of apoptosis-related genes and protein CAS3 and mRNA Bcl-2 expression (p < 0.05), and suppressed mRNA levels of antioxidant-related genes MT, SOD1, NRF2, and NQO1 (p < 0.05). In accordance with the cell test, dietary supplementation with ZnO-NPs mitigated the toxicity exerted by AFB1. In conclusion, ZnO-NPs has the protective effects against AFB1-induced hepatocyte injury by activating the expression of MTF-1 and the ectopic induction of MT expression, providing detailed information on the detoxification ability of MT on AFB1.
Collapse
Affiliation(s)
- Beiyu Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiling Li
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangteng Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Gu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Longqiang Xie
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Man Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingbiao Xu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaoming Tan
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Miao YD, Quan WX, Dong X, Gan J, Ji CF, Wang JT, Zhang F. Prognosis-related metabolic genes in the development of colorectal cancer progress and perspective. Gene 2023; 862:147263. [PMID: 36758843 DOI: 10.1016/j.gene.2023.147263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonplace malignant tumors in the world. The occurrence and development of CRC are involved in numerous events. Metabolic reprogramming is one of the hallmarks of cancer and is convoluted and associated with carcinogenesis. Lots of metabolic genes are involved in the occurrence and progression of CRC. Study methods combining tumor genomics and metabolomics are more likely to explore this field in depth. In this mini-review, we make the latest progress and future prospects into the different molecular mechanisms of seven prognosis-related metabolic genes, we screened out in previous research, involved in the occurrence and development of CRC.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Wu-Xia Quan
- Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Xin Dong
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Jian Gan
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Cui-Feng Ji
- Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Jiang-Tao Wang
- Department of Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Fang Zhang
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China.
| |
Collapse
|
5
|
Rafieian-Naeini HR, Zhandi M, Sadeghi M, Yousefi AR, Marzban H, Benson AP. The effect of dietary coenzyme Q10 supplementation on egg quality and liver histopathology of layer quails under cadmium challenge. J Anim Physiol Anim Nutr (Berl) 2023; 107:631-642. [PMID: 35429413 DOI: 10.1111/jpn.13715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/27/2022]
Abstract
The demand for quail eggs has been increased over the last decade due to its beneficial nutritional quality characteristics; however, different nutritional and environmental stressors adversely impact the quality of the produced eggs. This study was conducted to investigate whether dietary supplementation of coenzyme Q10 (CoQ10) could mitigate the negative impact of cadmium (Cd) administration on egg quality and liver histopathology. A total of 162 six-week-old laying Japanese quail (Coturnix japonica) were randomly allotted into three experimental groups. Treatments were as follows: (1) negative control (NC): feeding basal diet; (2) positive control (PC): feeding basal diet and Cd administration; and (3) CdQ10: feeding basal diet supplemented with CoQ10 (900 mg/kg diet) and Cd administration. Cadmium (10 mg/kg BW) was subcutaneously administrated at 10 and 11 weeks of age (woa). Feed conversion ratio (FCR), egg production, egg mass, mortality rate, Cd residue in egg, liver histopathology, and some internal and external egg quality indices were evaluated. Administration of Cd increased FCR in the PC group, but supplementation of CoQ10 partially ameliorated the impact of Cd on FCR (p < 0.05). Cadmium administration decreased both egg production and egg mass; however, CoQ10 supplementation partially mitigated these adverse effects of Cd injection in the CdQ10 compared to the PC group (p < 0.05). Cadmium decreased eggshell thickness and Haugh unit in PC quail compared to both NC and CdQ10 quail (p < 0.05). Moreover, egg yolk colour intensity was enhanced by CoQ10, where a* and b* indices were higher in CdQ10 compared to PC (p < 0.05). In conclusion, the current results demonstrate the beneficial effects of dietary CoQ10 supplementation on liver histopathology and some egg quality indices of Cd-challenged quail.
Collapse
Affiliation(s)
- Hamid R Rafieian-Naeini
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| | - Ali R Yousefi
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Havva Marzban
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Andrew P Benson
- Department of Poultry Science, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Wang J, Liu C, Zhao Y, Wang J, Li J, Zheng M. Selenium regulates Nrf2 signaling to prevent hepatotoxicity induced by hexavalent chromium in broilers. Poult Sci 2022; 102:102335. [PMID: 36470031 PMCID: PMC9719864 DOI: 10.1016/j.psj.2022.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hexavalent chromium (Cr(Ⅵ)) is considered to be a common environmental pollutant, which widely exists in industrial effluents and wastes and then potentially noxious effects to the health of the poultry. Studies have reported that selenium (Se), which is one of the essential trace elements of the poultry and participates in the oxidative metabolism, can alleviate Cr(Ⅵ)-induced organ damage by inhibiting oxidative stress, but its specific molecular mechanism remains unclear. Herein, animal models of Cr(Ⅵ)- and Se-exposure were constructed using broilers to investigate the antagonistic mechanism of Se to Cr(Ⅵ)-induced hepatotoxicity. In this experiment, the four groups of broiler models were used as the research objects: control, Se, Se plus Cr, and Cr groups. Histopathology and ultrastructure liver changes were observed. Liver-somatic index, serum biochemistry, oxidative stress, Nrf2 pathway related factors, and autophagy-related genes were also determined. Overall, Se was found to ameliorate the disorganized structure, hepatic insufficiency, and oxidative damage caused by Cr(Ⅵ) exposure. Electron microscopy analysis further showed that the number of autophagosomes was obviously decreased after Se treatment compared to Cr group. Furthermore, gene and protein expression analyses illustrated that the levels of Nrf2, glutathione peroxidase 1 (GPx-1), NAD(P)H: quinone oxidoreductase 1 (NQO1), and mechanistic target of rapamycin (mTOR) in the Se&Cr group was upregulated, along with decreased expression of Beclin 1, ATG5 and LC3 compared to the Cr group. These suggest that Se can repair the oxidative lesion and autophagy induced by Cr(Ⅵ) exposure in broiler livers by upregulating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jingqiu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
| | - Ci Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
- Corresponding authors:
| | - Yanbing Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
| | - Jinglu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
| | - Mingxue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
- Corresponding authors:
| |
Collapse
|
7
|
Honokiol Antagonizes Cadmium-Induced Nephrotoxicity in Quail by Alleviating Autophagy Dysfunction, Apoptosis and Mitochondrial UPR Inhibition with Its Antioxidant Properties. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101574. [PMID: 36295008 PMCID: PMC9604973 DOI: 10.3390/life12101574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Japanese quail is a highly economically valuable bird due to its commercial production for meat and eggs. Although studies have reported Cadmium (Cd) is a ubiquitous heavy metal that can cause injury to various organs, the molecular mechanisms of Cd on quail kidney injury remain largely unknown. It has been reported that Honokiol (HKL), a highly functional antioxidant, can protect cells against oxidative stress effectively. This study was conducted to investigate the effects of Cd on quail kidneys injury and the protective effect of HKL on Cd-induced nephrotoxicity. A total of 40 Japanese quails were randomly divided into four groups: the control group, Cd treatment group, Co-treatment group and HKL treatment group. The results showed that Cd resulted in significant changes in growth performance, kidney histopathology and kidney biochemical status, antioxidant enzymes and oxidative stress parameters, and ultrastructure of renal tubular epithelial cells, compared with controls. Cd increased the expression of autophagy-related and apoptosis-related genes, but decreased expression of lysosomal function-related and UPRmt-related genes. The co-treatment group ameliorated Cd-induced nephrotoxicity by alleviating oxidative stress, inhibiting apoptosis, repairing autophagy dysfunction and UPRmt disorder. In conclusion, dietary supplementation of HKL showed beneficial effects on Japanese quail kidney injury caused by Cd.
Collapse
|
8
|
Aendo P, De Garine-Wichatitsky M, Mingkhwan R, Senachai K, Santativongchai P, Krajanglikit P, Tulayakul P. Potential Health Effects of Heavy Metals and Carcinogenic Health Risk Estimation of Pb and Cd Contaminated Eggs from a Closed Gold Mine Area in Northern Thailand. Foods 2022; 11:foods11182791. [PMID: 36140919 PMCID: PMC9498197 DOI: 10.3390/foods11182791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Gold-mining activities have been demonstrated to result in significant environmental pollution by Hg, Pb, and Mn, causing serious concerns regarding the potential threat to the public health of neighboring populations around the world. The present study focused on heavy-metal contamination in the eggs, blood, feed, soil, and drinking water on chicken farms, duck farms, and free-grazing duck farms located in areas < 25 km and > 25 km away from a gold mine in northern Thailand. In an area < 25 km away, Hg, Pb, and Mn concentrations in the eggs of free-grazing ducks were significantly higher than > 25 km away (p < 0.05). In blood, Hg concentration in free-grazing ducks was also significantly higher than those in an area > 25 km away (p < 0.05). Furthermore, the Pb concentration in the blood of farm ducks was significantly higher than in an area > 25 km away (p < 0.05). The concentration of Cd in drinking water on chicken farms was significantly higher for farms located within 25 km of the gold mine (p < 0.05). Furthermore, a high correlation was shown between the Pb (r2 = 0.84) and Cd (r2 = 0.42) found between drinking water and blood in free-grazing ducks in the area < 25 km away. Therefore, health risk from heavy-metal contamination was inevitably avoided in free-grazing activity near the gold mine. The incremental lifetime cancer risk (ILCR) in the population of both Pb and Cd exceeded the cancer limit (10−4) for all age groups in both areas, which was particularly high in the area < 25 km for chicken-egg consumption, especially among people aged 13−18 and 18−35 years old. Based on these findings, long-term surveillance regarding human and animal health risk must be strictly operated through food chains and an appropriate control plan for poultry businesses roaming around the gold mine.
Collapse
Affiliation(s)
- Paweena Aendo
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Michel De Garine-Wichatitsky
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- CIRAD, UMR ASTRE, Kasetsart University, Bangkok 10900, Thailand
- ASTRE, University Montpellier, CIRAD (French Agricultural Research Centre for International Development), INRAE (French National Research Institute for Agriculture, Food and Environment), 34000 Montpellier, France
| | - Rachaneekorn Mingkhwan
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Pitchaya Santativongchai
- Bio-Veterinary Science (International Program), Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Praphaphan Krajanglikit
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Kasetsart University Research and Development Institute, 50 Ngam Wong Wan Rd., Lat Yao, Chatuchak, Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
9
|
Slivinska LG, Yaremchuk VY, Shcherbatyy AR, Gutyj BV, Zinko HO. Efficacy of hepatoprotectors in prophylaxis of hepatosis of laying hens. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatoses of laying hens are quite common in poultry farms as a result of improper practices of poultry maintenance consisting in excessive number of protein feeds for provision of high productivity. The objective of the study was preventive efficacy of Gep-A-Stress hepatoprotectors (carnitine hydrochloride, D L methionine, sorbitol, choline chloride, magnesium sulfate heptahydrate) and Hepasan VS (L-carnitine hydrochloride, sorbitol, choline chloride, magnesium sulfate hepahydrate, betaine hydrochloride, L-arginin) against hepatosis of laying hens. To determine the efficacy of Hep-A-Stres and Hepasan-VS hepatoprotectors during production tests (n = 4,500), we monitored the parameters of survival rate (the final number of individuals as percentage of the initial number) and egg productivity of laying hens. We determined that after 30 days of using the hepatoprotectors, the content of overall protein in blood serum of laying hens of the first and the second experimental groups decreased by 21.4% and 18.9% compared with the parameters prior to providing the hepatoprotectors and by 26.3% and 23.3% compared with the control group after receiving the drug. The urea contents in blood serum increased by 19.0% and 10.5%. Compared with the control, the activity of alanine aminotransferase decreased by 43.7% and 24.1% in the first experimental group and by 23.4% and 14.9% in the second. The activity of aspartate aminotransferase in blood serum of the experimental groups decreased by 10.7%. The cholesterol concentration decreased by 50% and 58.3%. The content of triaglycerols decreased by 24.1% and 8.9% respectively. The concentrations of high-density lipoproteins after 30 days of the experiment decreased by 33.3% and 77.8% respectively, the content of low-density lipoproteins decreased by 61.3% and 40.4% and 42.3%. Population maintenance equaled respectively 97.1%, 98.3% and 98.1%. At the end of the experiment, the egg productivity of laying hens of the first and second groups increased by 4% and 3.6% compared with the control. Therefore, intake of the hepaprotectors by laying hens stimulated their metabolism, positively influenced the blood parameters, survival and egg productivity. The conducted studies confirm the benefits of using hepatoprotectors for the prohylaxis of hepatosis of hens.
Collapse
|
10
|
Zhao M, He W, Tao C, Zhang B, Wang S, Sun Z, Xiong Z, Zhang N. Transcriptomics and transmission ultrastructural examination reveals the nephrotoxicity of cadmium in laying hens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39041-39051. [PMID: 35098466 DOI: 10.1007/s11356-021-18405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The objective of this study was to reveal the effects of cadmium (Cd) on ultrastructural changes, oxidative stress, and transcriptome expression in the kidneys of laying hens. Seventy-two healthy Hy-Line brown laying hens at 41 weeks old were randomly allocated to four treatment groups with six replicates. The control group received a basal diet without additional Cd incorporation, and the other three treatment groups received diets supplemented with 15, 30, or 60 mg Cd /kg of feed. After 6 weeks of exposure, the results show that administration of 60 mg/kg Cd significantly reduced (P < 0.05) eggshell thickness. With an increase in the Cd concentration in feed, the concentrations of renal Zn and Fe also had changed. Renal histopathology and ultrastructure also showed aggravated damage to glomeruli and renal tubules and the deformation of nuclei and mitochondria in all Cd treatment groups. With an increase in Cd in feed, the activity of glutathione peroxide (GPX) and catalase (CAT) was significantly reduced (P < 0.05), while the activity of total antioxidant capacity (T -AOC) was decreased (P < 0.05) only in the 60 mg/kg Cd group. RNA-seq analysis revealed that 410 genes displayed differential expression (≥ 1.5-fold) in the 60 mg/kg supplementation group, compared to the control group. GO and KEGG pathway analysis results showed that Cd affected many genes involved in mitochondria and ion transport. In conclusion, this study elaborates the mechanisms underlying renal toxicity caused by Cd, which might provide target candidate genes for alleviating Cd poisoning in laying hens.
Collapse
Affiliation(s)
- Man Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenbo He
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Basic Veterinary, College of Animal Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Can Tao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beiyu Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangjian Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhifeng Xiong
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Li X, Zheng Y, Zhang G, Wang R, Jiang J, Zhao H. Cadmium induced cardiac toxicology in developing Japanese quail (Coturnix japonica): Histopathological damages, oxidative stress and myocardial muscle fiber formation disorder. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109168. [PMID: 34403817 DOI: 10.1016/j.cbpc.2021.109168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022]
Abstract
The anthropogenic-induced cadmium (Cd) pollution poses great threats to human health and wildlife survival. Birds also suffer from Cd contamination and Cd exerts negative impacts on multiple organs in birds. However, its toxic effects on cardiac organ of birds are still unclear. In this study, one-week old male Japanese quails were exposed to 15, 30, 60 and 75 mg/kg Cd for 5 weeks when birds in control group reached sex maturity. The results showed that Cd could cause microstructural damages including congestion and myocardial fiberolysis. Ultrastructural analysis also showed myocardial muscle fiber disarrangement and rupture as well as mitochondrial swelling, vacuolation and membrane lysis in Cd concentration groups. Moreover, Cd induced oxidative stress in the heart by decreasing antioxidant enzyme activities of catalase (CAT), glutathione peroxidase (GPX), total antioxidant capacity (T-AOC), superoxide dismutase (SOD) while increasing oxidative biomarkers such as malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), and content of nitric oxide (NO). In addition, mRNA expression levels of genes involved in muscle fiber formation signaling pathway such as Follistatin (FST), paired box 3 (PAX3), myogenic differentiation 1 (MYoD1) and SRY-box transcription factor 6 (SOX6), were down-regulated by Cd exposure. Furthermore, PI3K/Akt/mTOR signaling pathway were disrupted by Cd exposure implying energy supply deficiency in the heart. We concluded that Cd caused cardiac dysfunction by inducing heart underdevelopment, histopathological injury, oxidative stress and myocardial muscle fiber formation disruption.
Collapse
Affiliation(s)
- Xuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ying Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Gaixia Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Junxia Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
12
|
Yu C, Yang C, Song X, Li J, Peng H, Qiu M, Yang L, Du H, Jiang X, Liu Y. Long Non-coding RNA Expression Profile in Broiler Liver with Cadmium-Induced Oxidative Damage. Biol Trace Elem Res 2021; 199:3053-3061. [PMID: 33078306 DOI: 10.1007/s12011-020-02436-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/11/2020] [Indexed: 12/25/2022]
Abstract
Cadmium pollution is serious heavy metal pollution in environmental pollution and impacts on livestock productivity. However, the effect and mechanisms of cadmium toxicity on the broiler remain unclear. This study aimed to explore the liver oxidative damage and reveal the related long non-coding RNA (lncRNA) expression patterns in the broiler liver with cadmium exposure. The broilers were fed with diets containing CdCl2 and detected the oxidative stress indexes in the liver tissues. Transcriptome sequencing of broiler liver was performed to identify cadmium exposure-related differentially expressed lncRNAs (DElncRNAs). The functions and pathways of DElncRNAs were analyzed by GO and KEGG. The sequencing results were verified by the quantitative real-time polymerase chain reaction. Cadmium exposure induced tissue structure disorder, focal hemorrhage, and irregular hepatocytes in the broiler liver, and significantly decreased GSH level and enzyme activities, and increased MDA expression in the liver. A total of 74 DElncRNAs were obtained in cadmium group compared with the control group, which were enriched in the GO terms, including intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator, branched-chain amino acid biosynthetic process. The enriched KEGG pathways, including lysine biosynthesis, valine, leucine and isoleucine biosynthesis, and pantothenate and CoA biosynthesis, were related to oxidative stress. PCR analysis indicated that the changes in ENSGALG00000053559, ENSGALG00000053926, and ENSGALG00000054404 expression were consistent with sequencing. Our results provide novel lncRNAs involved in oxidative stress in the broiler liver with cadmium exposure.
Collapse
Affiliation(s)
- Chunlin Yu
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Chaowu Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Xiaoyan Song
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Jingjing Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Han Peng
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Mohan Qiu
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Li Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Huarui Du
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|