1
|
Radeef AY, Najim AA, Karaghool HA, Jabbar ZH. Sustainable kitchen wastewater treatment with electricity generation using upflow biofilter-microbial fuel cell system. Biodegradation 2024; 35:893-906. [PMID: 38909143 DOI: 10.1007/s10532-024-10087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
The microbial fuel cell (MFC) is considered a modern technology used for treating wastewater and recovering electrical energy. In this study, a new dual technology combining MFC and a specialized biofilter was used. The anodic materials in the system were crushed graphite, either without coating (UFB-MFC) or coated with nanomaterials (nano-UFB-MFC). This biofilter served as a barrier to retain and remove turbidity and suspended solids, while also facilitating the role of bacteria in the removal of organic pollutants, phosphates, nitrates, sulfates, oil and greases. The results demonstrated that both systems exhibited high efficiency in treating kitchen wastewater, specifically greywater and dishwashing wastewater with high detergent concentrations. The removal efficiencies of COD, oil and grease, suspended solids, turbidity, nitrates, sulfates, and phosphates in first UFB-MFC were found to be 88, 95, 89, 86, 87, 75, and 94%, respectively, and in Nano-UFB-MFC were 86, 99, 95, 91, 81, 88, and 95%, respectively, with a high efficiency in recovering bioenergy reaching a value of 1.8 and 1.5 A m-3, respectively. The results of this study demonstrate the potential for developing MFC and utilizing it as a domestic system to mitigate pollution risks before discharging wastewater into the sewer network.
Collapse
Affiliation(s)
- Ahmed Y Radeef
- Department of Environmental Engineering, University of Tikrit, Salah al-Din, Iraq.
| | | | - Haneen A Karaghool
- Department of Environmental Engineering, University of Tikrit, Salah al-Din, Iraq
| | - Zaid H Jabbar
- Building and Construction Technique Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| |
Collapse
|
2
|
Karbelkar AA, Font M, Smith TJ, Sondermann H, O’Toole GA. Reconstitution of a biofilm adhesin system from a sulfate-reducing bacterium in Pseudomonas fluorescens. Proc Natl Acad Sci U S A 2024; 121:e2320410121. [PMID: 38498718 PMCID: PMC10990149 DOI: 10.1073/pnas.2320410121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Biofilms of sulfate-reducing bacterium (SRB) like Desulfovibrio vulgaris Hildenborough (DvH) can facilitate metal corrosion in various industrial and environmental settings leading to substantial economic losses. Although the mechanisms of biofilm formation by DvH are not yet well understood, recent studies indicate the large adhesin, DvhA, is a key determinant of biofilm formation. The dvhA gene neighborhood resembles the biofilm-regulating Lap system of Pseudomonas fluorescens but is curiously missing the c-di-GMP-binding regulator LapD. Instead, DvH encodes an evolutionarily unrelated c-di-GMP-binding protein (DVU1020) that we hypothesized is functionally analogous to LapD. To study this unusual Lap system and overcome experimental limitations with the slow-growing anaerobe DvH, we reconstituted its predicted SRB Lap system in a P. fluorescens strain lacking its native Lap regulatory components (ΔlapGΔlapD). Our data support the model that DvhA is a cell surface-associated LapA-like adhesin with a N-terminal "retention module" and that DvhA is released from the cell surface upon cleavage by the LapG-like protease DvhG. Further, we demonstrate DVU1020 (named here DvhD) represents a distinct class of c-di-GMP-binding, biofilm-regulating proteins that regulates DvhG activity in response to intracellular levels of this second messenger. This study provides insight into the key players responsible for biofilm formation by DvH, thereby expanding our understanding of Lap-like systems.
Collapse
Affiliation(s)
- Amruta A. Karbelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Maria Font
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, D-22607Hamburg, Germany
| | - T. Jarrod Smith
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Holger Sondermann
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, D-22607Hamburg, Germany
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| |
Collapse
|
3
|
Tong KTX, Tan IS, Foo HCY, Show PL, Lam MK, Wong MK. Sustainable circular biorefinery approach for novel building blocks and bioenergy production from algae using microbial fuel cell. Bioengineered 2023; 14:246-289. [PMID: 37482680 PMCID: PMC10367576 DOI: 10.1080/21655979.2023.2236842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
The imminent need for transition to a circular biorefinery using microbial fuel cells (MFC), based on the valorization of renewable resources, will ameliorate the carbon footprint induced by industrialization. MFC catalyzed by bioelectrochemical process drew significant attention initially for its exceptional potential for integrated production of biochemicals and bioenergy. Nonetheless, the associated costly bioproduct production and slow microbial kinetics have constrained its commercialization. This review encompasses the potential and development of macroalgal biomass as a substrate in the MFC system for L-lactic acid (L-LA) and bioelectricity generation. Besides, an insight into the state-of-the-art technological advancement in the MFC system is also deliberated in detail. Investigations in recent years have shown that MFC developed with different anolyte enhances power density from several µW/m2 up to 8160 mW/m2. Further, this review provides a plausible picture of macroalgal-based L-LA and bioelectricity circular biorefinery in the MFC system for future research directions.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn Bhd, Kajang, Selangor, Malaysia
| |
Collapse
|
4
|
Karbelkar AA, Font ME, Smith TJ, Sondermann H, O’Toole GA. Reconstitution of a Biofilm Adhesin System from a Sulfate-Reducing Bacterium in Pseudomonas fluorescens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568322. [PMID: 38045380 PMCID: PMC10690286 DOI: 10.1101/2023.11.22.568322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Biofilms of the sulfate reducing bacterium (SRB) Desulfovibrio vulgaris Hildenborough (DvH) can facilitate metal corrosion in various industrial and environmental settings leading to substantial economic losses; however, the mechanisms of biofilm formation by DvH are not yet well-understood. Evidence suggests that a large adhesin, DvhA, may be contributing to biofilm formation in DvH. The dvhA gene and its neighbors encode proteins that resemble the Lap system, which regulates biofilm formation by Pseudomonas fluorescens, including a LapG-like protease DvhG and effector protein DvhD, which has key differences from the previously described LapD. By expressing the Lap-like adhesion components of DvH in P. fluorescens, our data support the model that the N-terminal fragment of the large adhesin DvhA serves as an adhesin "retention module" and is the target of the DvhG/DvhD regulatory module, thereby controlling cell-surface location of the adhesin. By heterologously expressing the DvhG/DvhD-like proteins in a P. fluorescens background lacking native regulation (ΔlapGΔlapD) we also show that cell surface regulation of the adhesin is dependent upon the intracellular levels of c-di-GMP. This study provides insight into the key players responsible for biofilm formation by DvH, thereby expanding our understanding of Lap-like systems.
Collapse
Affiliation(s)
- Amruta A. Karbelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Maria E. Font
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Germany
| | - T. Jarrod Smith
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Holger Sondermann
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Germany
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
Chen X, Xiao B, Tang X, Bian C, Liu J, Li L. Microbial electrolysis cell simultaneously enhancing methanization and reducing hydrogen sulfide production in anaerobic digestion of sewage sludge. CHEMOSPHERE 2023; 337:139445. [PMID: 37423410 DOI: 10.1016/j.chemosphere.2023.139445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The effects of microbial electrolysis cells (MECs) at three applied voltages (0.8, 1.3, and 1.6 V) on simultaneously enhancing methanization and reducing hydrogen sulfide (H2S) production in the anaerobic digestion (AD) of sewage sludge were studied. The results showed that the MECs at 1.3 V and 1.6 V simultaneously enhanced the methane production by 57.02 and 12.70% and organic matter removal by 38.77 and 11.13%, and reduced H2S production by 94.8 and 98.2%, respectively. MECs at 1.3 V and 1.6 V created a micro-aerobic conditions for the digesters with oxidation-reduction potential as -178∼-232 mv, which enhanced methanization and reduced H2S production. Sulfur reduction, H2S and elemental sulfur oxidation occurred simultaneously in the ADs at 1.3 V and 1.6 V. The relative abundances of sulfur-oxidizing bacteria increased from 0.11% to 0.42% and those of sulfur-reducing bacteria decreased from 1.24% to 0.33% when the applied voltage of MEC increased from 0 V to 1.6 V. Hydrogen produced by electrolysis enhanced the abundance of Methanobacterium and changed the methanogenesis pathway.
Collapse
Affiliation(s)
- Xiangyu Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Benyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China.
| | - Xinyi Tang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Chunlin Bian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Lin Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
6
|
Zhang X, Wei S, Zhang D, Lu P, Huang Y. Efficient sulfur cycling improved the performance of flowback water treatment in a microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116368. [PMID: 36261973 DOI: 10.1016/j.jenvman.2022.116368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The sulfate-reducing mediate microbial fuel cell (MFC) shows advantages in treating recalcitrant flowback water (FW) from shale gas extraction, but the stability under fluctuant concentrations of sulfate in FW remains unknown. Herein, we investigated the impact of fluctuant sulfate concentrations on the performance of FW treatment in MFCs. Sulfate concentration showed a significant role in the MFC treating FW, with a COD removal of 69.8 ± 9.7% and a peak power density of 2164 ± 396 mW/m3 under 247.5 mg/L sulfate, but only 39.1% and 1216 mW/m3 under 50 mg/L sulfate. The fluctuation of sulfate in a short time allowed to a stable performance, but a longtime intermittent decrease of feeding sulfate concentration significantly inhibited power generation to no more than 512 mW/m3. The sulfur cycling between sulfate and sulfide existed in the system, but the cycling rate became much lower after the longtime intermittent decrease, with resulting to the decreased power generation. Abundant sulfur-oxidizing bacteria (SOB) of Desulfuromonadaceae and Helicobacteraceae in the MFC stably feeding with 247.5 mg/L sulfate supported a high sulfur cycling rate. With the cooperation of abundant sulfate-reducing bacteria (SRB) of Desulfovibrionaceae (capable of producing electricity) on the anode and Desulfobacteraceae in anolyte, this sulfur cycling endowed the MFC with high sulfate tolerance and critically contributed to recalcitrant organics removal and power generation. However, much less SOB of Helicobacteraceae and Campylobacteraceae on the anode with high S0 accumulation on the surface after the longtime intermittent decrease of sulfate likely led to the low sulfur cycling rate. With also less SRB of Marinilabiaceae (capable of producing electricity) and Synergistaceae in the system, this low sulfur cycling rate thus hampered power generation. This research provides an important reference for the bioelectrochemical treatment of wastewater containing recalcitrant organics and sulfate.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Shiqiang Wei
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Yongkui Huang
- National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing, 401120, China
| |
Collapse
|
7
|
Hao T. Adaptive response mechanisms of granular and flocculent sulfate-reducing sludge toward acidic multi-metal-laden wastewater. WATER RESEARCH 2022; 226:119227. [PMID: 36240714 DOI: 10.1016/j.watres.2022.119227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Dissimilatory sulfate reduction-based processes have long been a viable option for treating acidic metal-laden wastewater (AMW). Such processes can be optimized through enhancing sulfidogenic activity and the microbial consortia's resilience against a harsh environment. This study investigated how granular and flocculent sulfate-reducing bacteria (SRB) sludge respond to AMW as well as the mechanisms through which they adapt to the wastewater, with particular focuses on the stability of the sulfidogenic activities, metal removal, and the bacteria's resistance over the long-term: the flocculent SRB lost more than 50% of their treatment capacity after 35 days of treating AMW with the presence of Cd2+, Cu2+, Zn2+, and Ni2+ at 30 mg/L each, under pH = 4.5. In contrast, the granular SRB maintained its metal removal rate at 91% throughout the 161-day trial. Despite the SRB abundance remaining at approximate 40%, organics-partial oxidizing genera (Desulfobulbus and Desulfobacter) began to dominate due to their kinetic advantage. The extracellular glycosyl compositions were revealed to be critical for the stability of the granular structure and microbial activity as the extracellular proteins disintegrated irreversible. Usage the molecular dynamic simulation, the mobility of the metal ions in the SRB granular system was suppressed by the presence of a more diverse glycosyl composition compared with the flocculent system (10-50% diffusion coefficients differences). All of the identified glycosyls (especially xylose and rhamnose) exhibited strong interactions with Cu2+ (-470 kJ mol-1), while the maximum binding strength of Cd2+ to glycosyls was greater than -40 kJ mol-1, suggesting a low Cd2+complexation efficiency. The findings of this study shed light on the defensive mechanisms of SRB granules against multi-metal stress, and provide clues for efficient AMW treatment.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| |
Collapse
|
8
|
Arulmani SRB, Dai J, Li H, Chen Z, Sun W, Zhang H, Yan J, Kandasamy S, Xiao T. Antimony reduction by a non-conventional sulfate reducer with simultaneous bioenergy production in microbial fuel cells. CHEMOSPHERE 2022; 291:132754. [PMID: 34798109 DOI: 10.1016/j.chemosphere.2021.132754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Environmental toxicity of antimony (Sb) is significantly increased through the widespread industrial application. The extended release of Sb above the regulatory level became a risk to humans habituated in the ecosystem. Conventional methods to remediate Sb demand high energy or resource input, which further leads to secondary pollution. The bio-electrochemical system offers a promising bioremediation strategy to remove or reduce toxic heavy metals. Thus, this research explores the possibilities of simultaneous metal sulfide (MeS) precipitation and electricity production using a full biological Microbial fuel cell (MFC). A non-conventional sulfate-reducing bacteria (SRB) Citrobacter freundii SR10 was used for this investigation, where the MFC was operated for lactate utilization in the bio-anode and Sb reduction at the bio-cathode. This study observed 81% of coulombic efficiency (bio-anode) and 97% of sulfate reduction with 99.3% Sb (V) reduction (bio-cathode), and it was concluded that the MeS precipitation entirely depends on sulfide concentration via SR10 sulfate reduction. The MFC-SR10 offers a maximum power density of 1652.9 ± 32.1 mW/m3, and their performance was depicted using cyclic voltammetry and electrochemical impedance spectroscopy. The Sb reduction was evaluated through fluorescence spectroscopy, and the Sb (V) MeS precipitation was confirmed as stibnite (Sb2S3) by Raman spectroscopy and X-ray photoelectron spectroscopy. Furthermore, the matured anodic and cathodic biofilm formation was confirmed by Scanning electron microscopy with Energy-dispersive X-ray spectroscopy. Thus the MFC with SRB bio-cathode can be used as an alternative to simultaneously remove sulfate and Sb from the wastewater with electricity production.
Collapse
Affiliation(s)
- Samuel Raj Babu Arulmani
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Junxi Dai
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Han Li
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhenxin Chen
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Hongguo Zhang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, PR China.
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Sabariswaran Kandasamy
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 602105, Tamil Nadu, India
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, PR China
| |
Collapse
|
9
|
Srivastava P, Abbassi R, Yadav AK, Garaniya V, Lewis T, Zhao Y, Aminabhavi T. Interrelation between sulphur and conductive materials and its impact on ammonium and organic pollutants removal in electroactive wetlands. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126417. [PMID: 34174621 DOI: 10.1016/j.jhazmat.2021.126417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
This investigation is the first of its kind to evaluate the interrelation of sulphate (SO42-) with conductive materials as well as their individual and synergetic effects on the removal of ammonium and organic pollutants in electroactive wetlands, also known as constructed wetland (CW) - microbial fuel cell (MFC). The role of MFC components in CW was investigated to treat the sulphate containing wastewater under a long-term operation without any toxicity build-up in the system. A comparative study was also performed between CW-MFC and CW, where sulphate containing wastewater (S-replete) and without sulphate wastewater (S-deplete) was assessed. The S-replete showed high NH4+ removal than the S-deplete, and the requesnce of removal was: CW-MFC-replete>CW-MFC-deplete>CW-replete>CW-deplete. The chemical oxygen demand (COD) removal was high in the case of CW-MFC-replete, and the sequence of removal was CW-MFC-replete>CW-MFC-deplete>CW-deplete>CW-replete. X-ray photon spectroscopic study indicates 0.84% sulphur accumulation in CW-MFC-replete and 2.49% in CW-replete, indicating high sulphur precipitation in CW without the MFC component. The high relative abundance of class Deltaproteobacteria (7.3%) in CW-MFC-replete along with increased microbial diversity (Shannon index=3.5) rationalise the symbiosis of sulphate reducing/oxidising microbes and its impact on the treatment performance and electrochemical activity.
Collapse
Affiliation(s)
- Pratiksha Srivastava
- Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston 7248, Australia
| | - Rouzbeh Abbassi
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Asheesh Kumar Yadav
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Vikram Garaniya
- Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston 7248, Australia
| | - Trevor Lewis
- School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, Shaanxi, PR China
| | - Tejraj Aminabhavi
- Department of Chemistry, Karnatak University, Dharwad 580003, India.
| |
Collapse
|
10
|
Liu S, Feng X, Xue H, Qiu D, Huang Z, Wang N. Bioenergy generation and nitrogen removal in a novel ecological-microbial fuel cell. CHEMOSPHERE 2021; 278:130450. [PMID: 33838413 DOI: 10.1016/j.chemosphere.2021.130450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/10/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
A novel ecological-microbial fuel cell (E-MFC) was constructed based on the mutualistic symbiosis relationship among wetland plants Ipomoea aquatic, benthic fauna Tubifex tubifex (T. tubifex) and microorganisms. The maximum power densities of sediment MFC (S-MFC), wetland plant MFC (WP-MFC) and E-MFC were 6.80 mW/m2, 10.60 mW/m2 and 15.59 mW/m2, respectively. Ipomoea aquatic roots secreted organic matter as electricigens' fuel for electricity generation, while T. tubifex decomposed decaying leaves and roots into soluble organic matter and plant nutrients, forming a co-dependent and mutually beneficial system, which was conducive to bioelectricity production. The E-MFC obtained the highest nitrogen removal, and the removal efficiencies of NH4+-N and NO3--N were 90.4% and 96.5%, respectively. Hydraulic retention time (HRT), cathodic aeration and T. tubifex abundance had significant effects on E-MFC power generation. The performeance boost of E-MFC was closely related to anodic microbial community change caused by the introduction of T. tubifex.
Collapse
Affiliation(s)
- Shentan Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaojuan Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hongpu Xue
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Dengfei Qiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Zhiguang Huang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Nianqin Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
11
|
Yamane T, Yoshida N, Sugioka M. Estimation of total energy requirement for sewage treatment by a microbial fuel cell with a one-meter air-cathode assuming Michaelis-Menten COD degradation. RSC Adv 2021; 11:20036-20045. [PMID: 35479885 PMCID: PMC9033653 DOI: 10.1039/d1ra03061b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022] Open
Abstract
Calculations of chemical oxygen demand (COD) degradation in sewage by a microbial fuel cell (MFC) were used to estimate the total energy required for treatment of the sewage. Mono-exponential regression (MER) and the Michaelis-Menten equation (MME) were used to describe the MFC's COD removal rate (CRR). The tubular MFC used in this study (ϕ 5.0 × 100 cm) consisted of an air core surrounding a carbon-based cathode, an anion exchange membrane, and graphite non-woven fabric immersed in sewage. The MFC generated 0.26 A m-2 of the electrode area and 0.32 W m-3 of the sewage water, and 3.9 W h m-3 in a chemostat reactor supplemented continuously with sewage containing 180 mg L-1 of COD with a hydraulic retention time (HRT) of 12 h. The COD removal and coulombic efficiency (CE) were 46% and 19%, respectively, and the energy generation efficiency (EGE) was 0.054 kW h kg-1-COD. The CRR and current in the MFC were strongly dependent on the COD, which could be controlled by varying the HRT. The MER model predicted first-order rate constants of 0.054 and 0.034 for reactors with and without MFC, respectively. The difference in these values indicated that using MFC significantly increased the COD removal. The results of fitting the experimental data to the MME suggested that the total COD can be separated into nondegradable CODs (C n) and degradable CODs (C d) via MFC. The values of CRR for C d and CE suggest that MFC pretreatment for 12 hours prior to aeration results in a 75% decrease in net energy consumption while reducing sewage COD from 180 to 20 mg L-1.
Collapse
Affiliation(s)
- Taiki Yamane
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech) Gokiso-Cho, Showa-Ku Nagoya Aichi Japan
| | - Naoko Yoshida
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech) Gokiso-Cho, Showa-Ku Nagoya Aichi Japan
| | - Mari Sugioka
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech) Gokiso-Cho, Showa-Ku Nagoya Aichi Japan
| |
Collapse
|
12
|
Becerril-Varela K, Serment-Guerrero JH, Manzanares-Leal GL, Ramírez-Durán N, Guerrero-Barajas C. Generation of electrical energy in a microbial fuel cell coupling acetate oxidation to Fe 3+ reduction and isolation of the involved bacteria. World J Microbiol Biotechnol 2021; 37:104. [PMID: 34037857 DOI: 10.1007/s11274-021-03077-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 01/16/2023]
Abstract
An iron reducing enrichment was obtained from sulfate reducing sludge and was evaluated on the capability of reducing Fe3+ coupled to acetate oxidation in a microbial fuel cell (MFC). Three molar ratios for acetate/Fe3+ were evaluated (2/16, 3.4/27 and 6.9/55 mM). The percentages of Fe3+ reduction were in a range of 80-90, 60-70 and 40-50% for the MFCs at closed circuit for the molar ratios of 2/16, 3.4/27 and 6.9/55 mM, respectively. Acetate consumption was in a range of 80-90% in all cases. The results obtained at closed circuit for current density were: 11.37 mA/m2, 4.5 mA/m2 and 7.37 mA/m2 for the molar ratios of 2/16, 3.4/27 and 6.9/55 mM, respectively. Some microorganisms that were isolated and identified in the MFCs were Azospira oryzae, Cupriavidus metallidurans CH34, Enterobacter bugandensis 247BMC, Citrobacter freundii ATCC8090 and Citrobacter murliniae CDC2970-59, these bacteria have been reported as exoelectrogens in MFC and in MFC involving metals removal but not all of them have been reported to utilize acetate as preferred substrate. The results demonstrate that the isolates can utilize acetate as the sole source of carbon and suggest that Fe3+ reduction was carried out by a combination of different mechanisms (direct contact and redox mediators) utilized by the bacteria identified in the MFC. Storage of the energy generated from the 2/16 mM MFC system arranged in a series of three demonstrated that it is possible to utilize the energy to charge a battery.
Collapse
Affiliation(s)
- Karina Becerril-Varela
- Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico
| | - Jorge H Serment-Guerrero
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, 52750, Mexico City, Mexico
| | - Gauddy Lizeth Manzanares-Leal
- Laboratorio de Investigación en Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México (UAEM), Paseo Tollocan Esq. Jesús Carranza, 50180, Toluca, Mexico
| | - Ninfa Ramírez-Durán
- Laboratorio de Investigación en Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México (UAEM), Paseo Tollocan Esq. Jesús Carranza, 50180, Toluca, Mexico
| | - Claudia Guerrero-Barajas
- Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico.
| |
Collapse
|
13
|
Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. ENERGIES 2020. [DOI: 10.3390/en13246596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sustainable production of electricity from renewable sources by microorganisms is considered an attractive alternative to energy production from fossil fuels. In recent years, research on microbial fuel cells (MFCs) technology for electricity production has increased. However, there are problems with up-scaling MFCs due to the fairly low power output and high operational costs. One of the approaches to improving energy generation in MFCs is by modifying the existing anode materials to provide more electrochemically active sites and improve the adhesion of microorganisms. The aim of this review is to present the effect of anode modification with carbon compounds, metallic nanomaterials, and polymers and the effect that these modifications have on the structure of the microbiological community inhabiting the anode surface. This review summarizes the advantages and disadvantages of individual materials as well as possibilities for using them for environmentally friendly production of electricity in MFCs.
Collapse
|