1
|
Taiyebi KA, Welden NAC, Hossain MS. Exploring the application of the social-ecological system approach in Asian shrimp farming research and its implications for global sustainable shrimp farming: A systematic review. AQUACULTURE 2025; 597:741918. [DOI: 10.1016/j.aquaculture.2024.741918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Yuan Z, Lei Y, Wan B, Yang M, Jiang Y, Tian C, Wang Z, Wang W. Cadmium exposure elicited dynamic RNA m 6A modification and epi-transcriptomic regulation in the Pacific whiteleg shrimp Litopenaeus vannamei. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101307. [PMID: 39126882 DOI: 10.1016/j.cbd.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent post-transcriptional RNA modification in eukaryotic organisms, but its roles in the regulation of physiological resistance of marine crustaceans to heavy metal pollutants are poorly understood. In this study, the transcriptome-wide m6A RNA methylation profiles and dynamic m6A changes induced by acute Cd2+ exposure in the the pacific whiteleg shrimp Litopenaeus vannamei were comprehensively analyzed. Cd2+ toxicity caused a significant reduction in global RNA m6A methylation level, with major m6A regulators including the m6A methyltransferase METTL3 and the m6A binding protein YTHDF2 showing declined expression. Totally, 11,467 m6A methylation peaks from 6415 genes and 17,291 peaks within 7855 genes were identified from the Cd2+ exposure group and the control group, respectively. These m6A peaks were predominantly enriched in the 3' untranslated region (UTR) and around the start codon region of the transcripts. 7132 differentially expressed genes (DEGs) and 7382 differentially m6A-methylated genes (DMGs) were identified. 3186 genes showed significant changes in both gene expression and m6A methylation levels upon cadmium exposure, and they were related to a variety of biological processes and gene pathways. Notably, an array of genes associated with antioxidation homeostasis, transmembrane transporter activity and intracellular detoxification processes were significantly enriched, demonstrating that m6A modification may mediate the physiological responses of shrimp to cadmium toxicity via regulating ROS balance, Cd2+ transport and toxicity mitigation. The study would contribute to a deeper understanding of the evolutionary and functional significance of m6A methylation to the physiological resilience of decapod crustaceans to heavy metal toxicants.
Collapse
Affiliation(s)
- Zhixiang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yiguo Lei
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Boquan Wan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Miao Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yue Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changxu Tian
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongduo Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China.
| |
Collapse
|
3
|
Mortazavi MS, Sharifian S, Nozar SLM, Koohkan H, Dehghani R. Introducing bio-indicator fish of the Persian Gulf based on health risk assessment of 27 commercial species. J Trace Elem Med Biol 2024; 83:127373. [PMID: 38176317 DOI: 10.1016/j.jtemb.2023.127373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND The increasing consumption of seafood may bring health risks. It will be especially important for the people living along the coasts who are highly dependent on seafood for food and income. METHODS In this research, a comprehensive health risk assessment was performed on 27 species of high-consumption commercial fish sampled from stations located in Hormozgan province within the Northeast Persian Gulf. Concentrations of trace metals and their health risk were investigated. RESULTS Spatial distribution of trace metals in commercial fish showed central stations including Kong and Greater Tonb have higher concentrations of all trace metals except Pb. Some metals showed a significant correlation between concentrations. Our finding indicated the average concentration of all trace metals except Ni in all species was below the concentrations proposed by WHO/FAO/USEPA. EDI for all metals in all species in both adult and child age groups was lower than its RfD (oral reference dose of trace metal) showing the daily consumption of these fish does not pose any health risk and implicates seafood consumption guidelines or policies. Values of THQ for each metal and HI for all metals were lower than 1 in all commercial fish indicating the lack of non-cancerous health risk through the long-term consumption of these fish. The research found potential health risks associated with the consumption of these fish, specifically related to the metals Cr, Ni, and Cd. CONCLUSION In total, health risk indices proposed eight fish as bio-indicator species of the Persian Gulf. The findings emphasize the risk management of commercial fish consumption, especially bio-indicator species, in Hormozgan province, the Northeast Persian Gulf.
Collapse
Affiliation(s)
- Mohammad Seddiq Mortazavi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran.
| | - Sana Sharifian
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| | - Seyedeh Laili Mohebbi Nozar
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| | - Hadi Koohkan
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| | - Reza Dehghani
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| |
Collapse
|
4
|
Ra WJ, Yoo HJ, Kim YH, Yun T, Soh B, Cho SY, Joo Y, Lee KW. Heavy metal concentration according to shrimp species and organ specificity: Monitoring and human risk assessment. MARINE POLLUTION BULLETIN 2023; 197:115761. [PMID: 37952375 DOI: 10.1016/j.marpolbul.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
This study assessed heavy metal levels (lead (Pb), cadmium (Cd), total arsenic (tAs), arsenite (As (III)), arsenate (As (V)), monomethyl arsenic acid (MMA), dimethylarsinic acid (DMA), total mercury (tHg), and methylmercury (MeHg)) in six organs (total portion, head, body, shell, muscle, and intestine) of 11 shrimp species distributed in Korea. Shrimp exhibited significant variability in heavy metal accumulation, with Alaskan pink and dried shrimp (Lesser glass, Southern rough, and Chinese ditch prawn) showing the highest metal concentrations. Notably, the intestine having the highest overall metal content, while Cd was most prominent in the head, tHg was highest in the muscle. The Hazard Quotient values of 11 shrimp species in South Korea were below the European Food Safety Authority's allowable limits for heavy metals. This study illuminates the heavy metal profiles of distributed shrimp in Korea and emphasizes the ongoing need for monitoring heavy metals on seafood to ensure consumer safety.
Collapse
Affiliation(s)
- Wook-Jin Ra
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yeon-Hee Kim
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taehyun Yun
- Department of Statistics, College of Natural Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Bokyung Soh
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Su Yeob Cho
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yongsung Joo
- Department of Statistics, College of Natural Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
5
|
Ramos-Miras JJ, Sanchez-Muros MJ, Renteria P, de Carrasco CG, Roca-Perez L, Boluda-Navarro M, Pro J, Martín JAR. Potentially toxic element bioaccumulation in consumed indoor shrimp farming associated with diet, water and sediment levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121794-121806. [PMID: 37962756 PMCID: PMC10724093 DOI: 10.1007/s11356-023-30939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Shrimp production is an important industry for many countries and shrimp consumption is increasing worldwide. Shrimps are a highly nutritional food, but can pose a risk for human health if subject to high levels of environmental contaminants. This work studies the presence of As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn in shrimps from Ecuador and compares them to such contents noted in other shrimp-production areas in the world to evaluate the possible risks associated with these elements for consumer health, and to relate them to potentially toxic element (PTE) contents in water, sediments and diets, and also to animal biometric parameters. The PTE levels (mg kg-1 DM) obtained are as follows: in the head-As (3.52-6.11), Cd (0.02-0.10), Co (0.14-0.49) Cr (0.23-4.89), Cu (99.9--233.0), Ni (0.52-1.86), Pb (0.24-1.09), Zn (51.8-100.5) and Hg (μg kg-1 DM) (10.00-66.81); in the tail-(0.91-3.21), Cd (0.01-0.02), Co (0.01-0.43) Cr (0.01-6.52), Cu (20.0-72.44), Ni (0.15-2.03), Pb (0.01-0.69), Zn (31.2-66.1) and Hg (μg kg-1 DM) (10.00-67.18). The concentration of all the PTEs is generally lower than the limits set for seafood by European regulations, except for As in the cephalothorax (4.63 mg kg-1). Different behaviours for PTE accumulation in shrimps were found, which preferentially tend to accumulate in the cephalothorax, except for Hg (40.13 μg kg-1 DM), which accumulates in muscle (body) and is associated with contents of proteins, lipids and total shrimp weight. Nonetheless, the target hazard quotient (THQ) values for PTEs indicate that the consumption of shrimp muscles from Ecuador does not pose a human health risk because the values of these indices are below 1 in all cases.
Collapse
Affiliation(s)
- José Joaquín Ramos-Miras
- Dpto. Didácticas Específicas, Universidad de Córdoba, Avda. San Alberto Magno s/n, 14071, Córdoba, Spain
| | - Maria Jose Sanchez-Muros
- Dept. Biology, and Geology, University of Almería, Ctra. de Sacramento s/n, La Cañada, 04120, Almería, Spain
| | - Patricio Renteria
- Faculty of Agricultural Sciences, Technical University of Machala, 070102, Machala, Ecuador
| | - Carlos Gil de Carrasco
- Dept. Biology, and Geology, University of Almería, Ctra. de Sacramento s/n, La Cañada, 04120, Almería, Spain
| | - Luis Roca-Perez
- Dept. Biologia Vegetal, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés I Estellés S/n, 46100, Burjassot, Valencia, Spain
| | | | - Javier Pro
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Jose Antonio Rodríguez Martín
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km. 7,5, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Páez-Osuna F, Valencia-Castañeda G, Rodríguez Valenzuela O, Frías-Espericueta MG. Microplastics and heavy metals in shrimp Litopenaeus vannamei from the SAMARE lagoon, Gulf of California: Is it a case of combined MPs-Zn pollution in gills? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122479. [PMID: 37652226 DOI: 10.1016/j.envpol.2023.122479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
Microplastic (MPs) pollution studies in the coastal environment are increasing, as observed in the growing number of documents published yearly. However, studies regarding the combined effect of MPs and heavy metal (HMs) pollution are scarce, particularly in marine biota. Microplastics and HMs were investigated in the exoskeleton (EX), gills (GI), gastrointestinal tract (GT), and muscle (MU) of the shrimp Litopenaeus vannamei from the Santa María-La Reforma (SAMARE) lagoon, Mexico. Results showed that shrimp ingest mainly MPs of the fiber type (74.7%) and fragments (22.7%). The most frequent MP colors in the four tissues were transparent (61.4%-72.2%) and blue (3.2-36.4%) fibers. Microplastic abundance in the four tissues was 5.5 ± 0.5 MPs per individual. The predominant polymers found in most tissues were cotton and synthetic polyethylene-terephthalate (PET). Heavy metals exhibited wide variability depending on the tissue and metal; the highest Cu concentration in the GI was 138 ± 16 μg/g, while the highest Cd value was 0.40 ± 0.11 μg/g, Ni was 17.0 ± 8.3 μg/g, and Zn was 120 ± 18 μg/g in the GT. The relationship between MPs and HMs was significant and positive (p < 0.05) between MPs and Zn in the GI. This reveals a possible MPs-Zn interaction due to cotton and PET reactivity or is related to polymer manufacture. This study implies that an essential part of the world fisheries is a potential route for MPs and HMs. The problem is exacerbated due to the consumption of whole shrimp tissues consumed by humans. Considering Mexican shrimp consumption, and MPs in this study, the estimated intake was 594 MPs/capita/year. Future research requires MP monitoring in coastal lagoons that support wildlife and important fisheries and assess their effects combined with HMs.
Collapse
Affiliation(s)
- Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Mexico; Miembro de El Colegio de Sinaloa, Sinaloa, Mexico.
| | - Gladys Valencia-Castañeda
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Mexico
| | - Osvaldo Rodríguez Valenzuela
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, Mazatlán, 82000, Sinaloa, Mexico
| | - Martín G Frías-Espericueta
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, Mazatlán, 82000, Sinaloa, Mexico
| |
Collapse
|
7
|
Mohamed AES, Heba MEED, Ahmed RE, Mahmoud SK, Ghada YZ. Spatial distribution and risk assessment of heavy metals in the coastal waters of the Gulf of Suez, Red Sea, Egypt. MARINE POLLUTION BULLETIN 2023; 193:115122. [PMID: 37329737 DOI: 10.1016/j.marpolbul.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
To assess ecological and health risks connected with heavy metal contamination in the Gulf of Suez, Red Sea seawater during winter 2021. The selected heavy metals were detected using the "AAS" Technique. The results presented that; the average metal concentrations ranged between (0.57, 1.47, 0.76, 5.44, 0.95, 18.79, and 1.90 μg/l) for Cd, Pb, Zn, Mn, Fe, Cu, and Ni along the investigated area. Pollution Index for overall Gulf sectors <1, indicating a slightly and moderately affected region. Metal Index for the Gulf is >1, representing the existence of heavy metal pollution, which is alarming in this area. (HPI) Heavy metal pollution index <100 indicates low contamination of heavy metal "and is apposite for consumption. The Gulf's ecological risk index (Eri) mostly fell under the low-ecological risk. The risk health estimation revealed that CDI values for carcinogenic were (10-5 to10-7), (10-6 to10-8), and (10-9 to10-11) for ingestion, dermal, and inhalation, respectively. Ingestion for children is twice as high as the proportions documented for adults. At the same time, THQ values for non-carcinogenic ingestion, dermal, and inhalation were (10-5 to 10-8), (10-4 to 10-5), and (10-10 to 10-12), respectively. Also, the total hazard quotient (THQ ing. + THQ inh.) values were <1 acceptable limit, indicating no non-carcinogenic risk to the residents through dermal adsorption and oral water intake. The ingestion pathway was the main pathway for total risk. In conclusion, the overall hazard risks are lower than the permissible limit of <1 regarding heavy metals.
Collapse
Affiliation(s)
- A El-Sawy Mohamed
- Marine Chemistry Lab National Institute of Oceanography and Fisheries, Egypt
| | - M Ezz El-Din Heba
- Marine Chemistry Lab National Institute of Oceanography and Fisheries, Egypt.
| | - R Elgendy Ahmed
- Geology Lab National Institute of Oceanography and Fisheries, Egypt
| | - S Kelany Mahmoud
- Microbiology Lab National Institute of Oceanography and Fisheries, Egypt.
| | - Y Zaghloul Ghada
- Marine Chemistry Lab National Institute of Oceanography and Fisheries, Egypt
| |
Collapse
|
8
|
Passos T, Penny D, Barcellos R, Nandan SB, Babu DSS, Santos IR, Sanders CJ. Increasing carbon, nutrient and trace metal accumulation driven by development in a mangrove estuary in south Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154900. [PMID: 35367545 DOI: 10.1016/j.scitotenv.2022.154900] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Mangrove forests sequester organic carbon, nutrients and toxic metals sorbed to fine sediment, and thus restrict the mobility of pollutants through estuarine environments. However, mangrove removal and environmental degradation caused by industrial activity and urban growth can impact the ability of mangrove communities to provide these critical ecosystem services. Here, we use sediment profiles from an impacted tropical estuary in southwest India to provide a c. 70-year record of carbon, nutrient and trace metal burial in the context of rapid urban development and the systemic removal of mangrove communities. Our results show that carbon and nutrient accumulation rates increase sharply during the 1990's in accordance with the high rates of deforestation. Nitrogen and phosphorus accumulation rates increased fourfold and twofold, respectively, during the same period. Organic carbon accumulation was fivefold higher than the global average during this period, reflecting intense deforestation during the last three decades. The enrichment of Hg, Zn, Pb, Mo, Ni, Cu and Mn demonstrate clear anthropogenic impact starting in the 1950's and peaking in 1990. Mercury, the trace metal with the highest enrichment factor, increased sevenfold in the most recent sediments due to increased fossil fuel emissions, untreated water and incineration of medical waste and/or fertilizers used in aquaculture. Organic carbon isotope (δ13C) and C:N molar ratios indicate shifts to more terrestrial-derived source of organic matter in the most recent sediments reflecting growing deforestation of which may be prevalent in southeast Asia due to increasing development. This study emphasizes the critical role played by mangrove ecosystems in attenuating anthropogenically-derived pollutants, including carbon sequestration, and reveals the long-term consequences of mangrove deforestation in the context of rapidly developing economies.
Collapse
Affiliation(s)
- Tiago Passos
- The University of Sydney, School of Geosciences, NSW 2006, Australia.
| | - Dan Penny
- The University of Sydney, School of Geosciences, NSW 2006, Australia
| | - Roberto Barcellos
- Department of Oceanography, Federal University of Pernambuco, Recife, PE, Brazil
| | - S Bijoy Nandan
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science & Technology, Kochi-16, Kerala, India
| | - D S Suresh Babu
- National Centre for Earth Science Studies (NCESS), Ministry of Earth Sciences (MoES), Thiruvananthapuram 695031, India
| | - Isaac R Santos
- Department of Marine Sciences, University of Gothenburg, Sweden; National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2540, Australia
| | - Christian J Sanders
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2540, Australia
| |
Collapse
|
9
|
Sharifian S, Mortazavi MS, Nozar SLM. Health risk assessment of commercial fish and shrimp from the North Persian Gulf. J Trace Elem Med Biol 2022; 72:127000. [PMID: 35605439 DOI: 10.1016/j.jtemb.2022.127000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Bioaccumulation of trace metals in the food web demands continuous monitoring of seafood safety. Here, the food safety of commercial fish bluespot mullet Crenimugil seheli, deep flounder Pseudorhombus elevates, and Jinga shrimp Metapenaeus affinis was assessed from commercial and industrial region of the West Bandar Abbas, the North Persian Gulf, for the first time. METHODS For this purpose, concentrations of trace metals Ni, Zn, Cu, Cr, Cd, and Pb, and their health risks were investigated. RESULTS Results showed the average concentration of all trace metals in all species was below concentrations proposed by WHO/FAO/USEPA. The finding on risk assessment of three species indicated three species are safe for daily consumption. Long-term consumption of three species would not pose potential non-carcinogenic health risk. However, it would result in carcinogenic effects from the ingestion of trace metals Ni, Cr, and Cd. CONCLUSIONS The data emphasizes the need for the continuous monitoring in this industrial region in the future to manage and control pollutant sources and to ensure the quality of seafood.
Collapse
Affiliation(s)
- Sana Sharifian
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| | - Mohammad Seddiq Mortazavi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran.
| | - Seyedeh Laili Mohebbi Nozar
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| |
Collapse
|
10
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Padmavathy P. Effect of household culinary processes on organochlorine pesticide residues (OCPs) in the seafood (Penaeus vannamei) and its associated human health risk assessment: Our vision and future scope. CHEMOSPHERE 2022; 297:134075. [PMID: 35218780 DOI: 10.1016/j.chemosphere.2022.134075] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/05/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Food safety is crucial in today's competitive trading market, as it directly affects human health and promotes seafood exports. The effects of thermal processing (boiling, frying, grilling, and microwave cooking) on pesticide residues (PR) in P. vannamei were assessed. The PR in raw and processed shrimp ranged from 0.007 to 0.703 μg/kg for uncooked/raw, not detected (ND) to 0.917 μg/kg for boiled, ND to 0.506 μg/kg for fried, ND to 0.573 μg/kg for grilled and ND to 0.514 μg/kg for microwave cooked shrimps. The Endrin, endosulfan sulfate, and heptachlor were predominant PR found in the raw and processed shrimp. The PR content in raw and cooked shrimps were below the maximum residue limits (MRL) set by the Codex Alimentarius Commission (2021) and the European Commission (86/363/1986 and 57/2007). The estimated daily intake (EDI) of PR from raw and processed shrimps were below the ADI prescribed by CAC. The hazard quotient (HQ) and hazard ratio (HR) values were <1, indicating no non-carcinogenic or carcinogenic health implications through shrimp consumption. The estimated maximum allowable shrimp consumption rate (CRlim) suggests an adult can eat >100 shrimp meals/month, which is over the USEPA's (2000)recommendation of >16 meals/month without health issues. The Effect of thermal processing was detected in the following order: boiling < grilling < frying < microwave cooking. The processing factor (PF < 0.7), paired t-test (t < 0.05), Tukey post hoc (p < 0.05) test, Bray-Curtis similarity index, and matrix plot exhibited that all the four thermal processing methods have a considerable impact on pesticides in the processed shrimps. But frying (59.4%) and microwave cooking (60.3%) reduced PR far beyond boiling (48.8%) and grilling (51.3%). Hence, we recommend frying and microwave processing are better methods for minimizing PR in seafood than boiling or grilling.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India
| | - Geevaretnam Jeyasekaran
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Nagapattinam, 611002, Tamil Nadu, India
| | - Pandurangan Padmavathy
- Department of Aquatic Environment and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| |
Collapse
|
11
|
Sharifian S, Taherizadeh MR, Dehghani M, Nabavi M. Food safety of the green tiger shrimp Penaeus semisulcatus from the Persian Gulf. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23861-23870. [PMID: 34817819 DOI: 10.1007/s11356-021-17620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Seafood is a rich source of essential compounds for human health, but the consumption of aquatic products that are exposed to environmental pollutants, especially trace metals, comes with risk. Therefore, in this study, the levels of nickel, zinc, and lead in the muscle of shrimp Penaeus semisulcatus caught from the north of the Persian Gulf as a polluted environment were measured, and the health risks were assessed. The results showed that the level of Zn (300.88 ± 2.76 µg/g) in the muscle of shrimp was higher than Ni (6.82 ± 0.10) and Pb (1.10 ± 0.09 µg/g), and the amount of accumulation of all three metals is higher than the allowable limit proposed by the FAO/WHO. According to values of estimated daily intake (EDI) and target hazard quotient (THQ), the consumption of shrimp has no or minimal risk for health. However, the target cancer risk (TR) of Ni (adult, 0.00294; child, 0.00196) indicated that Ni accumulation is associated with carcinogenic risks. These findings may be helpful in the proper management of seafood quality and public health in the Persian Gulf.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Mohammad Reza Taherizadeh
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Mohsen Dehghani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Moein Nabavi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| |
Collapse
|
12
|
Effect of different thermal processing methods on potentially toxic metals in the seafood, Penaeus vannamei, and the related human health risk assessment. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Dehghani M, Sharifian S, Taherizadeh MR, Nabavi M. Tracing the heavy metals zinc, lead and nickel in banana shrimp (Penaeus merguiensis) from the Persian Gulf and human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38817-38828. [PMID: 33745043 DOI: 10.1007/s11356-021-13063-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Seafood has long been considered a unique source of nutrition. However, increasing trends in consumption of marine products must be considered, especially in potentially polluted environments such as the Persian Gulf. This study was undertaken to analyse the level of heavy metal contamination of nickel (Ni), zinc (Zn), and lead (Pb) in shrimp (Penaeus merguiensis) captured from the northern Persian Gulf. The concentration of heavy metals in the muscle of shrimp followed the order Zn > Ni > Pb. The content of Zn and Ni was higher than recommended standard limits by the FAO/WHO. The combined impact of all metals was lower than the acceptable limit of 1 in shrimp. The carcinogenic risk for Ni was higher than the unacceptable value. In total, our finding indicated no potential health risk from the daily consumption of this species. However, long-term consumption of shrimp can pose a risk of carcinogenic effects of nickel. Continuous monitoring of these trace metals in seafood is necessary to ensure the quality of seafood and food safety.
Collapse
Affiliation(s)
- Mohsen Dehghani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Mohammad Reza Taherizadeh
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Moein Nabavi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| |
Collapse
|
14
|
El Bahgy HEK, Elabd H, Elkorashey RM. Heavy metals bioaccumulation in marine cultured fish and its probabilistic health hazard. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41431-41438. [PMID: 33786759 DOI: 10.1007/s11356-021-13645-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
In aquacultures, heavy metals could be accumulated in fish tissues from natural and human-related sources depending on different factors. This study aims to estimate the level of bioaccumulation of heavy metals in cultured Gilt-head sea bream Sparusaurata. In this regard, heavy metals concentrations were measured in both water and fish musculature that were collected from a private fish farm in Kafr ElSheikh, Egypt. Regarding the water samples, heavy metals were within the permissible limits with exception of Cd, Cu, and Zn. In fish musculature, all heavy metals were within the WHO/FAO permissible limits. The bioaccumulation factor (BAF) indicated that mostly all heavy metals accumulation in the Gilt-head sea bream musculature decreased with time which may be correlated with the increase in water pH, calcium, and other cations concentrations. The hazard index (HI) calculations indicate no adverse health effects of heavy metals on humans through daily fish consumption so far. However, health risks are not negligible making the regular monitoring of metal contaminants in the studied area a necessity.
Collapse
Affiliation(s)
- Halla E K El Bahgy
- Hygiene and Veterinary Care Department, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
- National Center for International Research, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Hiam Elabd
- Aquatic Animals Diseases and Management Department, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Reham M Elkorashey
- Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt.
| |
Collapse
|
15
|
Hidayati NV, Syakti AD, Asia L, Lebarillier S, Khabouchi I, Widowati I, Sabdono A, Piram A, Doumenq P. Emerging contaminants detected in aquaculture sites in Java, Indonesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145057. [PMID: 33592457 DOI: 10.1016/j.scitotenv.2021.145057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals of emerging concern (acetaminophen (ACM), trimethoprim (TMP), oxytetracycline (OTC), and sulfamethoxazole (SMX)) were detected in water samples from aquaculture environments and nonaquaculture sites in four regions located on the northern coast of Central Java. ACM was the most prevalent pharmaceutical, with a mean concentration ranging from not detected (n.d.) to 5.5 ± 1.9 ngL-1 (Brebes). Among the target antibiotics (TMP, OTC, SMX), OTC was the most ubiquitous, with a mean concentration varying from n.d. to 8.0 ± 3.3 ngL-1. Correlation analysis demonstrated that there was a significant correlation between TMP and SMX concentrations. Based on ecological risk assessment evaluation, the use of OTC requires serious consideration, as it presented high health risks to algae, while ACM, TMP, and SMX posed an insignificant to moderate risk to algae, invertebrates, and fish. The findings obtained from this study highlight OTC as an emerging contaminant of prominent concern. More attention needs to be given to managing and planning for the sustainable management of shrimp farms, particularly in the northern part of Central Java.
Collapse
Affiliation(s)
- Nuning Vita Hidayati
- Aix Marseille Univ, CNRS, LCE, Marseille, France; Fisheries and Marine Science Faculty - Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia; Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia; Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia
| | - Agung Dhamar Syakti
- Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia; Marine Science and Fisheries Faculty - Raja Ali Haji Maritime University, Jl. Politeknik Senggarang-Tanjungpinang, Riau Islands Province 29100, Indonesia.
| | | | | | | | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Anne Piram
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | | |
Collapse
|