1
|
Tian X, Yue D, Hou T, Xiao F, Wang Z, Cai W. Separation of Chloride and Sulfate Ions from Desulfurization Wastewater Using Monovalent Anions Selective Electrodialysis. MEMBRANES 2024; 14:73. [PMID: 38668101 PMCID: PMC11051948 DOI: 10.3390/membranes14040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
The high concentration of chloride ions in desulphurization wastewater is the primary limiting factor for its reusability. Monovalent anion selective electrodialysis (S-ED) enables the selective removal of chloride ions, thereby facilitating the reuse of desulfurization wastewater. In this study, different concentrations of NaCl and Na2SO4 were used to simulate different softened desulfurization wastewater. The effects of current density and NaCl and Na2SO4 concentration on ion flux, permselectivity (PSO42-Cl-) and specific energy consumption were studied. The results show that Selemion ASA membrane exhibits excellent permselectivity for Cl- and SO42-, with a significantly lower flux observed for SO42- compared to Cl-. Current density exerts a significant influence on ion flux; as the current density increases, the flux of SO42- also increases but at a lower rate than that of Cl-, resulting in an increase in permselectivity. When the current density reaches 25 mA/cm2, the permselectivity reaches a maximum of 50.4. The increase in NaCl concentration leads to a decrease in the SO42- flux; however, the permselectivity is reduced due to the elevated Cl-/SO42- ratio. The SO42- flux increases with the increase in Na2SO4 concentration, while the permselectivity increases with the decrease in Cl-/SO42- ratio.
Collapse
Affiliation(s)
- Xufeng Tian
- School of Environment, Tsinghua University, Beijing 100084, China; (X.T.); (D.Y.)
- Horizon (Beijing) Environmental Engineering Co., Ltd., Beijing 101299, China;
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China; (X.T.); (D.Y.)
| | - Tao Hou
- Horizon (Beijing) Environmental Engineering Co., Ltd., Beijing 101299, China;
| | - Fuyuan Xiao
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China; (F.X.); (Z.W.)
| | - Zhiping Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China; (F.X.); (Z.W.)
| | - Weibin Cai
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China; (F.X.); (Z.W.)
| |
Collapse
|
2
|
Al-Amshawee SKA, Yunus MYBM. Electrodialysis membrane desalination with diagonal membrane spacers: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28727-y. [PMID: 37620701 DOI: 10.1007/s11356-023-28727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/06/2023] [Indexed: 08/26/2023]
Abstract
Electrodialysis desalination uses ion exchange membranes, membrane spacers, and conductors to remove salt from water. Membrane spacers, made of polymeric strands, reduce concentration polarization. These spacers have properties such as porosity and filament shape that affect their performance. One important property is the spacer-bulk attack angle. This study systematically reviews the characteristics of a 45° attack angle of spacers and its effects on concentration polarization and fluid dynamics. Membrane spacers in a channel create distinct flow fields and concentration profiles. When set at a 45° attack angle, spacers provide greater turbulence and mass-heat transfer than traditional spacers. This is because both the transverse and longitudinal filaments become diagonal in relation to the bulk flow direction. A lower attack angle (<45°) results in a lower pressure drop coupled with a decline in wakes and stream disruption because when the filaments are more parallel to the primary fluid direction, the poorer their affect. This research concludes that membrane spacers with a 45° spacer-bulk attack angle function optimally compared to other angles.
Collapse
Affiliation(s)
- Sajjad Khudhur Abbas Al-Amshawee
- Centre for Sustainability of Ecosystem and Earth Resources (Earth Centre), Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia.
| | - Mohd Yusri Bin Mohd Yunus
- Centre for Sustainability of Ecosystem and Earth Resources (Earth Centre), Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
| |
Collapse
|
3
|
Zhao W, Zhang W, Liu Y, Chen GQ, Halim R, Deng H. Fe3+ ions induced rapid co-deposition of polydopamine-polyethyleneimine for monovalent selective cation exchange membrane fabrication. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Efficient removal of metal ions from the ionic liquid aqueous solution by selective electrodialysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Review: Brine Solution: Current Status, Future Management and Technology Development. SUSTAINABILITY 2022. [DOI: 10.3390/su14116752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Desalination brine is extremely concentrated saline water; it contains various salts, nutrients, heavy metals, organic contaminants, and microbial contaminants. Conventional disposal of desalination brine has negative impacts on natural and marine ecosystems that increase the levels of toxicity and salinity. These issues demand the development of brine management technologies that can lead to zero liquid discharge. Brine management can be productive by adopting economically feasible methodologies, which enables the recovery of valuable resources like freshwater, minerals, and energy. This review focuses on the recent advances in brine management using various membrane/thermal-based technologies and their applicability in water, mineral, and energy recoveries, considering their pros and cons. This review also exemplifies the hybrid processes for metal recovery and zero liquid discharge that may be adopted, so far, as an appropriate futuristic strategy. The data analyzed and outlook presented in this review could definitely contribute to the development of economically achievable future strategies for sustainable brine management.
Collapse
|
6
|
Panagopoulos A. Study and evaluation of the characteristics of saline wastewater (brine) produced by desalination and industrial plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23736-23749. [PMID: 34816342 DOI: 10.1007/s11356-021-17694-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Desalination and industrial plants all around the world generate large amounts of saline wastewater (brine). The discharge of brine from facilities poses a severe environmental threat, while at the same time, the opportunity to recover resources is being lost as discharged brine is rich in valuable metals that could be recovered as salts/minerals. To this aim, this study presents and analyzes for the first time the characteristics of different brine effluents (from industries such as desalination, oil and gas production, petrochemical, aquaculture, pharmaceutical, textile) to prevent environmental pollution and to recover valuable resources (i.e., salts, minerals, metals, chemicals) enabling the concept of waste-to-resource (circular water economy model). The results revealed that the common salinity values in brine effluents range from 0.5 to 150 g/L, while the only exception is the produced water from the oil and gas industry (up to 400 g/L). Brine effluents from all sectors contain sodium, chloride, calcium, and potassium ions in high concentrations, while the production of common salts such as NaCl, CaCl2, and MgCl2 from brine can be economically profitable. Besides common ions, precious metals such as lithium, rubidium, and cesium are present in low concentrations (<25 mg/L); however, their extraction from brine effluents can be significantly profitable due to their very high sale price. The treatment and valorization of brine can be implemented by the hybridization of membrane-based, chemical, biological, and thermal-based technologies/processes in minimal and zero liquid discharge (MLD/ZLD) systems.
Collapse
Affiliation(s)
- Argyris Panagopoulos
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou, 15780, Athens, Greece.
| |
Collapse
|
7
|
Valdés H, Saavedra A, Flores M, Vera-Puerto I, Aviña H, Belmonte M. Reverse Osmosis Concentrate: Physicochemical Characteristics, Environmental Impact, and Technologies. MEMBRANES 2021; 11:753. [PMID: 34677518 PMCID: PMC8541667 DOI: 10.3390/membranes11100753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
This study's aim is to generate a complete profile of reverse osmosis concentrate (ROC), including physicochemical characteristics, environmental impact, and technologies for ROC treatment, alongside element recovery with potential valorization. A systematic literature review was used to compile and analyze scientific information about ROC, and systematic identification and evaluation of the data/evidence in the articles were conducted using the methodological principles of grounded data theory. The literature analysis revealed that two actions are imperative: (1) countries should impose strict regulations to avoid the contamination of receiving water bodies and (2) desalination plants should apply circular economies. Currently, synergizing conventional and emerging technologies is the most efficient method to mitigate the environmental impact of desalination processes. However, constructed wetlands are an emerging technology that promise to be a viable multi-benefit solution, as they can provide simultaneous treatment of nutrients, metals, and trace organic contaminants at a relatively low cost, and are socially accepted; therefore, they are a sustainable solution.
Collapse
Affiliation(s)
- Hugo Valdés
- Centro de Innovación en Ingeniería Aplicada (CIIA), Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule (UCM), Av. San Miguel 3605, Talca 3460000, Chile
| | - Aldo Saavedra
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins 3363, Estación Central 9160000, Chile
| | - Marcos Flores
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Carlos Schorr 255, Talca 3473620, Chile;
| | - Ismael Vera-Puerto
- Centro de Innovación en Ingeniería Aplicada (CIIA), Departamento de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3460000, Chile;
| | - Hector Aviña
- iiDEA Group, Department of Industrial and Environmental Process Engineering, Engineering Institute, National Autonomous University of Mexico (UNAM), Ciudad de México 04510, Mexico;
| | - Marisol Belmonte
- Laboratorio de Biotecnología, Medio Ambiente e Ingeniería (LABMAI), Facultad de Ingeniería, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Valparaíso 2340000, Chile;
| |
Collapse
|
8
|
Fu R, Yan H, Zhu Y, Wang H, Lu F, Su Y, Li W, Fu R, Liu Z, An J, Wang Y. Separation and concentration of ultrafiltration permeate from landfill leachate effluent using polymeric membrane electrodialysis. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rong Fu
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Haiyang Yan
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Yaru Zhu
- Institute of Integrated Environmental Technology, Everbright Green Technology & Innovation China Everbright Environment Group Limited Nanjing People's Republic of China
| | - Huangying Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Feipeng Lu
- Institute of Integrated Environmental Technology, Everbright Green Technology & Innovation China Everbright Environment Group Limited Nanjing People's Republic of China
| | - Ya Su
- Institute of Integrated Environmental Technology, Everbright Green Technology & Innovation China Everbright Environment Group Limited Nanjing People's Republic of China
| | - Wei Li
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Rongqiang Fu
- Key Laboratory of Charged Polymeric Membrane Materials of Shandong Province Shandong Tianwei Membrane Technology Co., Ltd. Weifang People's Republic of China
| | - Zhaoming Liu
- Key Laboratory of Charged Polymeric Membrane Materials of Shandong Province Shandong Tianwei Membrane Technology Co., Ltd. Weifang People's Republic of China
| | - Jin An
- Institute of Integrated Environmental Technology, Everbright Green Technology & Innovation China Everbright Environment Group Limited Nanjing People's Republic of China
| | - Yaoming Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| |
Collapse
|