1
|
Zou Q, Tian X, Mao Q, Zhu X, Kong Y. Lipid accumulation product mediating the association between uranium and cerebrovascular diseases mortality: Evidence from National Health and Nutrition Examination Survey. Medicine (Baltimore) 2024; 103:e40888. [PMID: 39705492 DOI: 10.1097/md.0000000000040888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
This study investigated the potential association between uranium exposure and mortality from cerebrovascular diseases, with a focus on the mediating effects of lipid indicators. Employing recommended sampling weights to account for National Health and Nutrition Examination Survey' complex survey design, this analysis drew from data collected between 2005 and 2016. The study examined the impact of uranium on mortality from cerebrovascular diseases using various statistical approaches, including Cox regression to assess linear relationships within metal mixtures. It also evaluated the role of lipid-adjusted plutonium (LAP) as a mediator and verified the persistence of associations across different subgroups. The study encompassed 4312 participants and established a significant direct link between uranium levels and mortality from cerebrovascular diseases (hazard ratio (95%CI) = 20.4243 (20.1347-20.7181), P = .0266). It also identified LAP as a mediating factor in the relationship, accounting for a mediated proportion of 1.35%. The findings highlight a pivotal connection between uranium exposure and increased mortality due to cerebrovascular diseases, with LAP playing a significant intermediary role.
Collapse
Affiliation(s)
- Qu Zou
- Department of Hepatobiliary Surgery, ChengDu Sixth People's Hospital, Chengdu, China
| | - Xinling Tian
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingsong Mao
- Hepatobiliary Pancreatic Surgery, Banan Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Xiaoyi Zhu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuzhe Kong
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
2
|
Ucar S, Yaprak E, Yigider E, Kasapoglu AG, Oner BM, Ilhan E, Ciltas A, Yildirim E, Aydin M. Genome-wide analysis of miR172-mediated response to heavy metal stress in chickpea (Cicer arietinum L.): physiological, biochemical, and molecular insights. BMC PLANT BIOLOGY 2024; 24:1063. [PMID: 39528933 PMCID: PMC11555882 DOI: 10.1186/s12870-024-05786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Chickpea (Cicer arietinum L.), a critical diploid legume in the Fabaceae family, is a rich source of protein, vitamins, and minerals. However, heavy metal toxicity severely affects its growth, yield, and quality. MicroRNAs (miRNAs) play a crucial role in regulating plant responses to both abiotic and biotic stress, including heavy metal exposure, by suppressing the expression of target genes. Plants respond to heavy metal stress through miRNA-mediated regulatory mechanisms at multiple physiological, biochemical, and molecular levels. Although the Fabaceae family is well represented in miRNA studies, chickpeas have been notably underrepresented. This study aimed to investigate the effects of heavy metal-induced stress, particularly from 100 µM concentrations of cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), and 30 µM arsenic (As), on two chickpea varieties: ILC 482 (sensitive) and Azkan (tolerant). The assessment focused on physiological, biochemical, and molecular parameters. Furthermore, a systematic characterization of the miR172 gene family in the chickpea genome was conducted to better understand the plant's molecular response to heavy metal stress. RESULTS Variance analysis indicated significant effects of genotype (G), treatment (T), and genotype-by-treatment (GxT) interactions on plant growth, physiological, and biochemical parameters. Heavy metal stress negatively impacted plant growth in chickpea genotypes ILC 482 and Azkan. A reduction in chlorophyll content and relative leaf water content was observed, along with increased cell membrane damage. In ILC 482, the highest hydrogen peroxide (H₂O₂) levels in shoot tissue were recorded under As, Cd, and Ni treatments, while in Azkan, peak levels were observed with Pb treatment. Malondialdehyde (MDA) levels in root tissue were highest in ILC 482 under Cd and Ni exposure and in Azkan under As, Cr, and Cd treatments. Antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), were significantly elevated under heavy metal stress in both genotypes. Gene expression analysis revealed upregulation of essential antioxidant enzyme genes, such as SOD, CAT, and APX, with APX showing notable increases in both shoot and root tissues compared to the control. Additionally, seven miR172 genes (miR172a, miR172b, miR172c, miR172d, miR172e, miR172f, and miR172g) were identified in the chickpea genome, distributed across five chromosomes. All genes exhibited conserved hairpin structures essential for miRNA functionality. Phylogenetic analysis grouped these miR172 genes into three clades, suggesting strong evolutionary conservation with other plant species. The expression analysis of miR172 and its target genes under heavy metal stress showed varied expression patterns, indicating their role in enhancing heavy metal tolerance in chickpea. CONCLUSIONS Heavy metal stress significantly impaired plant growth and physiological and biochemical parameters in chickpea genotypes, except for cell membrane damage. The findings underscore the critical role of miR172 and its target genes in modulating chickpea's response to heavy metal stress. These insights provide a foundational understanding for developing stress-tolerant chickpea varieties through miRNA-based genetic engineering approaches.
Collapse
Affiliation(s)
- Sumeyra Ucar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Esra Yaprak
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Esma Yigider
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey.
| | - Ayse Gul Kasapoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Burak Muhammed Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Emre Ilhan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Ertan Yildirim
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Murat Aydin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
3
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
4
|
Zhong J, Wei H, Xie JX, Wu YH, Tang B, Zou Q, Guo PR, Chen ZL. Uptake, subcellular distribution, and fate of tetracycline in two wetland plants supplemented with microbial agents: Effect and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121428. [PMID: 38879966 DOI: 10.1016/j.jenvman.2024.121428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The use of wetland plants in the context of phytoremediation is effective in the removal of antibiotics from contaminated water. However, the effectiveness and efficiency of many of these plants in the removal of antibiotics remain undetermined. In this study, the effectiveness of two plants-Phragmites australis and Iris pseudacorus-in the removal of tetracycline (TC) in hydroponic systems was investigated. The uptake of TC at the roots of I. pseudacorus and P. australis occurred at concentrations of 588.78 and 106.70 μg/g, respectively, after 7-day exposure. The higher uptake of TC in the root of I. pseudacorus may be attributed to its higher secretion of root exudates, which facilitate conditions conducive to the reproduction of microorganisms. These rhizosphere-linked microorganisms then drove the TC uptake, which was higher than that in the roots of P. australis. By elucidating the mechanisms underlying these uptake-linked outcomes, we found that the uptake of TC for both plants was significantly suppressed by metabolic and aquaporin inhibition, suggesting uptake and transport of TC were active (energy-dependent) and passive (aquaporin-dominated) processes, respectively. The subcellular distribution patterns of I. pseudacorus and P. australis in the roots were different, as expressed by differences in organelles, cell wall concentration levels, and transport-related dynamics. Additionally, the microbe-driven enhancement of the remediation capacities of the plants was studied comprehensively via a combined microbial-phytoremediation hydroponic system. We confirmed that the microbial agents increased the secretion of root exudates, promoting the variation of TC chemical speciation and thus enhancing the active transport of TC. These results contribute toward the improved application of wetland plants in the context of antibiotic phytoremediation.
Collapse
Affiliation(s)
- Jie Zhong
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Hang Wei
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Jian-Xiong Xie
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Yu-Hui Wu
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qi Zou
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Peng-Ran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Testing and Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Zhi-Liang Chen
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China.
| |
Collapse
|
5
|
Qadir M, Hussain A, Shah M, Hamayun M, Al-Huqail AA, Iqbal A, Ali S. Improving sunflower growth and arsenic bioremediation in polluted environments: Insights from ecotoxicology and sustainable mitigation approaches. Heliyon 2024; 10:e33078. [PMID: 38988560 PMCID: PMC11234106 DOI: 10.1016/j.heliyon.2024.e33078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
The issue of arsenic (As) contamination in the environment has become a critical concern, impacting both human health and ecological equilibrium. Addressing this challenge requires a comprehensive strategy encompassing water treatment technologies, regulatory measures for industrial effluents, and the implementation of sustainable agricultural practices. In this study, diverse strategies were explored to enhance As accumulation in the presence of Acinetobacter bouvetii while safeguarding the host from the toxic effects of arsenate exposure. The sunflower seedlings associated with A. bouvetii demonstrated a favorable relative growth rate (RGR) and net assimilation rate (NAR) even less than 100 ppm of As stress. Remarkably, the NAR and RGR of A. bouvetii-associated seedlings outperformed those of control seedlings cultivated without A. bouvetii in As-free conditions. Additionally, a markedly greater buildup of bio-transformed As was observed in A. bouvetii-associated seedlings (P = 0.05). An intriguing observation was the normal levels of reactive oxygen species (ROS) in A. bouvetii-associated seedlings, along with elevated activities of key enzymatic antioxidants like catalases (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and peroxidases (POD), along with non-enzymatic antioxidants (phenols and flavonoids). This coordinated antioxidant defense system likely contributed to the improved survival and growth of the host plant species amidst As stress. A. bouvetii not only augmented the growth of the host plants but also facilitated the uptake of bio-transformed As in the contaminated medium. The rhizobacterium's modulation of various biochemical and physiological parameters indicates its role in ensuring the better survival and progression of the host plants under As stress.
Collapse
Affiliation(s)
- Muhammad Qadir
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Anwar Hussain
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Mohib Shah
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Asma A. Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amjad Iqbal
- Department of Food Science & Technology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| |
Collapse
|
6
|
Nawaz M, Sun J, Bo Y, He F, Shabbir S, Hassan MU, Pan L, Ahmad P, Sonne C, Du D. Cadmium induced defense enhance the invasive potential of Wedelia trilobata under herbivore infestation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133931. [PMID: 38447369 DOI: 10.1016/j.jhazmat.2024.133931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Cadmium (Cd) pollution is on the rise due to rapid urbanization, which emphasize the potential adverse effects on plant biodiversity and human health. Wedelia as a dominant invasive species, is tested for its tolerance to Cd-toxicity and herbivore infestation. We investigate defense mechanism system of invasive Wedelia trilobata and its native congener Wedelia chinensis against the Cd-pollution and Spodoptera litura infestation. We found that Cd-toxicity significantly increase hydrogen peroxide (H2O2), Malondialdehyde (MDA) and hydroxyl ions (O2•) in W. chinensis 20.61%, 4.78% and 15.68% in leave and 27.44%, 25.52% and 30.88% in root, respectively. The photosynthetic pigments (Chla, Chla and Caro) and chlorophyll florescence (Fo and Fv/Fm) declined by (60.23%, 58.48% and 51.96%), and (73.29% and 55.75%) respectively in W. chinensis and (44.76%, 44.24% and 44.30%), and (54.66% and 45.36%) in W. trilobata under Cd treatment and S. litura. Invasive W. trilobata had higher enzymatic antioxidant SOD 126.9/71.64%, POD 97.24/94.92%, CAT 53.99/25.62% and APX 82.79/50.19%, and nonenzymatic antioxidant ASA 10.47/16.87%, DHA 15.07/27.88%, GSH 15.91/10.03% and GSSG 13.56/17.93% activity in leaf/root, respectively. Overall, W. trilobata accumulate higher Cd content 55.41%, 50.61% and 13.95% in root, shoot and leaf tissues respectively, than its native congener W. chinensis. While, nutrient profile of W. chinensis reveals less uptake of Fe, Cu and Zn than W. trilobata. W. trilobata showed efficient alleviation of oxidative damage through upregulating the genes related to key defense such as SOD, POD, CAT, APX, GR, PROL, FLV, ABA and JAZ, and metal transporter in leaves, shoot and root tissues, respectively. Conclusively, W. trilobata efficiently employed Cd-triggered defense for successful invasion, even under S. litura infestation, in Cd-contaminated soil.
Collapse
Affiliation(s)
- Mohsin Nawaz
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianfan Sun
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feng He
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Samina Shabbir
- Department of Chemistry, The Women University Multan, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences Jiangxi Agricultural University, Nanchang 330045, China
| | - Linxuan Pan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Kashmir, Jammu and Kashmir 192301, India
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Mandal RR, Bashir Z, Mandal JR, Raj D. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:502. [PMID: 38700594 DOI: 10.1007/s10661-024-12680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Water pollution is an inextricable problem that stems from natural and human-related factors. Unfortunately, with rapid industrialization, the problem has escalated to alarming levels. The pollutants that contribute to water pollution include heavy metals (HMs), chemicals, pesticides, pharmaceuticals, and other industrial byproducts. Numerous methods are used for treating HMs in wastewater, like ion exchange, membrane filtration, chemical precipitation, adsorption, and electrochemical treatment. But the remediation through the plant, i.e., phytoremediation is the most sustainable approach to remove the contaminants from wastewater. Aquatic plants illustrate the capacity to absorb excess pollutants including organic and inorganic compounds, HMs, and pharmaceutical residues present in agricultural, residential, and industrial discharges. The extensive exploitation of these hyperaccumulator plants can be attributed to their abundance, invasive mechanisms, potential for bioaccumulation, and biomass production. Post-phytoremediation, plant biomass can be toxic to both water bodies and soil. Therefore, the circular bioeconomy approach can be applied to reuse and repurpose the toxic plant biomass into different circular bioeconomy byproducts such as biochar, biogas, bioethanol, and biodiesel is essential. In this regard, the current review highlights the potential strategies for the phytoremediation of HMs in wastewater and various strategies to efficiently reuse metal-enriched biomass material and produce commercially valuable products. The implementation of circular bioeconomy practices can help overcome significant obstacles and build a new platform for an eco-friendlier lifestyle.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Jyoti Ranjan Mandal
- Electro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
8
|
Nawaz M, Hussain I, Mahmood-ur-Rehman, Ashraf MA, Rasheed R. Salicylic Acid and Gemma-Aminobutyric Acid Mediated Regulation of Growth, Metabolites, Antioxidant Defense System and Nutrient Uptake in Sunflower ( Helianthus annuus L.) Under Arsenic Stress. Dose Response 2024; 22:15593258241258407. [PMID: 38803513 PMCID: PMC11129579 DOI: 10.1177/15593258241258407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Background Arsenic (As) is a highly toxic and carcinogenic pollutant commonly found in soil and water, posing significant risks to human health and plant growth. Objective The objectives of this study to evaluate morphological, biochemical, and physiological markers, as well as ion homeostasis, to alleviate the toxic effects of As in sunflowers through the exogenous application of salicylic acid (SA), γ-aminobutyric acid (GABA), and their combination. Methods A pot experiment was conducted using two sunflower genotypes, FH-779 and FH-773, subjected to As stress (60 mg kg-1) to evaluate the effects of SA at 100 mg L-1, GABA at 200 mg L-1, and their combination on growth and related physiological and biochemical attributes under As stress. Results The study revealed that As toxicity had a detrimental effect on various growth parameters, chlorophyll pigments, relative water content, total proteins, and nutrient uptake in sunflower plants. It also led to increased oxidative stress, as indicated by higher levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2), along with As accumulation in the roots and leaves. However, the application of SA and GABA protected against As-induced damage by enhancing the enzymatic antioxidant defense system. This was achieved through the activation of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities, as well as an increase in osmolytes. They also improved nutrient acquisition and plant growth under As toxicity. Conclusions We investigated the regulatory roles of SA and GABA in mitigating arsenic-induced phytotoxic effects on sunflower. Our results revealed a significant interaction between SA and GABA in regulating growth, photosynthesis, metabolites, antioxidant defense systems, and nutrient uptake in sunflower under As stress. These findings provide valuable insights into plant defense mechanisms and strategies to enhance stress tolerance in contaminated environments. In the future, SA and GABA could be valuable tools for managing stress in other important crops facing abiotic stress conditions.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Mahmood-ur-Rehman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad A. Ashraf
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
9
|
Bouquet D, Lépinay A, Le Guern C, Jean-Soro L, Capiaux H, Gaudin P, Lebeau T. Maintaining the cultivation of vegetables with low Pb accumulation while remediating the soil of an allotment garden (Nantes, France) by phytoextraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29374-29384. [PMID: 38573580 DOI: 10.1007/s11356-024-33104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Lead (Pb) is commonly found in urban soils and can transfer to vegetables. This entails a health risk for consumers of garden crops. The increasing demand of gardening on urban soil linked to the population increase and concentration in urban areas induces an increase in the risk, as people could be forced to cultivate contaminated soils. The aim of this study was to evaluate the performance of a cropping system that allows simultaneously (i) growing eatable vegetables that accumulate few Pb and (ii) cleaning up the soil with other plants by phytoextraction. The tests were carried out in an allotment garden (Nantes, France) where soils are moderately enriched by Pb from geogenic origin (178 mg.kg-1 of dry soil on average). Four vegetables known to accumulate slightly Pb (Solanum lycopersicum, Brassica oleracea cv. "Capitata," Solanum tuberosum, and Phaseolus vulgaris) were grown. The in situ ability of Brassica juncea L. to progressively absorb the phytoavailable Pb of the soil was assessed during four seasons. Analyses of the edible parts of the four vegetables confirmed that they can all be safely cultivated. The accumulation of Pb in B. juncea shoots was too low (ca. 1 mg.kg-1 of dry matter at best) for phytoextraction purposes. Our results confirm that it is possible to grow very low Pb-accumulating vegetables on soils moderately contaminated with Pb, although it was not possible to reduce phytoavailable Pb rapidly enough with B. juncea. This study identifies possible avenues of research to improve this cropping system by using appropriate vegetables that will allow food production to continue on moderately contaminated soil while cleaning it up.
Collapse
Affiliation(s)
- Dorine Bouquet
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, 2 Rue de La Houssinière, 44322, Nantes Cedex, France
- IRSTV-FR CNRS 2488, Ecole Centrale de Nantes, 1 rue de la Noë, BP 92101, 44321, Nantes, France
| | - Alexandra Lépinay
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, 2 Rue de La Houssinière, 44322, Nantes Cedex, France
- OSUNA-UAR3281, CNRS, Nantes Université, 2 rue de la Houssinière, 44322, Nantes Cedex, France
- IRSTV-FR CNRS 2488, Ecole Centrale de Nantes, 1 rue de la Noë, BP 92101, 44321, Nantes, France
| | - Cécile Le Guern
- BRGM, 44323, Nantes, France
- IRSTV-FR CNRS 2488, Ecole Centrale de Nantes, 1 rue de la Noë, BP 92101, 44321, Nantes, France
| | - Liliane Jean-Soro
- Univ Gustave Eiffel, GERS-LEE, 44344, Bouguenais, France
- IRSTV-FR CNRS 2488, Ecole Centrale de Nantes, 1 rue de la Noë, BP 92101, 44321, Nantes, France
| | - Hervé Capiaux
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, 2 Rue de La Houssinière, 44322, Nantes Cedex, France
- OSUNA-UAR3281, CNRS, Nantes Université, 2 rue de la Houssinière, 44322, Nantes Cedex, France
- IRSTV-FR CNRS 2488, Ecole Centrale de Nantes, 1 rue de la Noë, BP 92101, 44321, Nantes, France
| | - Pierre Gaudin
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, 2 Rue de La Houssinière, 44322, Nantes Cedex, France
- OSUNA-UAR3281, CNRS, Nantes Université, 2 rue de la Houssinière, 44322, Nantes Cedex, France
- IRSTV-FR CNRS 2488, Ecole Centrale de Nantes, 1 rue de la Noë, BP 92101, 44321, Nantes, France
| | - Thierry Lebeau
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, 2 Rue de La Houssinière, 44322, Nantes Cedex, France.
- OSUNA-UAR3281, CNRS, Nantes Université, 2 rue de la Houssinière, 44322, Nantes Cedex, France.
- IRSTV-FR CNRS 2488, Ecole Centrale de Nantes, 1 rue de la Noë, BP 92101, 44321, Nantes, France.
| |
Collapse
|
10
|
Manousi N, Anthemidis A. A continuous flow polyurethane foam solid phase microextraction lab-in-syringe platform for the automatic determination of toxic metals. Talanta 2024; 269:125492. [PMID: 38042142 DOI: 10.1016/j.talanta.2023.125492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
A novel fully automatic continuous flow polyurethane foam solid phase microextraction lab-in-syringe system for on-line sample preconcentration/separation has been developed as a front-end to flame atomic absorption spectrometry. For the first time lab-in-syringe in continuous flow has been adopted for the determination of toxic metals. The microextraction procedure was performed after on-line metal complexation with ammonium pyrrolidine dithiocarbamate, while the elution was conducted by 400 μL of methyl isobutyl ketone. The main chemical and hydrodynamic factors that affected the performance of the method were optimized using Cd and Pb as model analytes. For 90 s preconcentration time, the limits of the detection were 0.20 and 1.7 μg L-1 for Cd and Pb, respectively, while the enhancement factors were 79 for Cd and 150 for Pb. The relative standard deviation% values were lower than 2.8 % for all analytes. As a proof-of-concept the proposed system was used for environmental water analysis, providing relative recoveries within the range of 94.0 and 104.4 %. The Green Analytical Procedure Index and Blue Applicability Grade Index proved reduced environmental impact and high practicality for the proposed method.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Aristidis Anthemidis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
11
|
Biswas A, Choudhary A, Darbha GK. From ground to gut: Evaluating the human health risk of potentially toxic elements in soil, groundwater, and their uptake by Cocos nucifera in arsenic-contaminated environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123342. [PMID: 38215870 DOI: 10.1016/j.envpol.2024.123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/03/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
This study aimed to gauge the toxicity of potentially toxic elements (PTEs) in coconut crops cultivated in arsenic-contaminated areas while offering a global perspective encompassing more than 100 impacted countries. The current investigation provides crucial insights into the assessment of PTEs pollution using the Bioaccumulation factor, Geo-accumulation index, Potential ecological risk index, Hazardous index, and Lifetime cancer risk (LCR) and highlights the potential human health risks posed by contaminated food, water, and soil. From 22 severely polluted sites in West Bengal, India, soil, groundwater (GW), and coconut water (CW) samples were collected, acidified, and digested using microwave digestion, for PTEs quantification using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results revealed that despite high concentrations of arsenic in soils (4.6 ± 3.4 mg kg-1), and GW (22.2 ± 150.9 μg L-1), CW (0.7 ± 3.1 μg L-1) levels were within permissible limits. Groups of PTEs with comparable sources and distributions were discovered through Principal Component Analysis (PCA). A speciation diagram was used to predict the prevalence of arsenic species in all three matrices. The Hazardous Index (HI < 1) indicated no probability of non-carcinogenic diseases for children and adults in all the compartments. However, exposure to GW and soil contaminated with Cr, As, and Cd by children (9.02 × 10-13 to 2.77 × 10-4) and adults (6.51 × 10-14 to 1.18 × 10-4) would increase their susceptibility to cancer (LCR >10-6). The study concluded that moderate lifetime consumption of CW is safe and has no significant impact on healthy individuals. Additionally, CW is a rich source of essential micronutrients such as Zn, Fe, Mn, and B. Overall, the findings of this study could help in developing appropriate strategies for reducing PTEs contamination and protecting human health.
Collapse
Affiliation(s)
- Abhishek Biswas
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Aniket Choudhary
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
| |
Collapse
|
12
|
Munir N, Javaid A, Abideen Z, Duarte B, Jarar H, El-Keblawy A, Sheteiwy MS. The potential of zeolite nanocomposites in removing microplastics, ammonia, and trace metals from wastewater and their role in phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1695-1718. [PMID: 38051490 DOI: 10.1007/s11356-023-31185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
Nanocomposites are emerging as a new generation of materials that can be used to combat water pollution. Zeolite-based nanocomposites consisting of combinations of metals, metal oxides, carbon materials, and polymers are particularly effective for separating and adsorbing multiple contaminants from water. This review presents the potential of zeolite-based nanocomposites for eliminating a range of toxic organic and inorganic substances, dyes, heavy metals, microplastics, and ammonia from water. The review emphasizes that nanocomposites offer enhanced mechanical, catalytic, adsorptive, and porosity properties necessary for sustainable water purification techniques compared to individual composite materials. The adsorption potential of several zeolite-metal/metal oxide/polymer-based composites for heavy metals, anionic/cationic dyes, microplastics, ammonia, and other organic contaminants ranges between approximately 81 and over 99%. However, zeolite substrates or zeolite-amended soil have limited benefits for hyperaccumulators, which have been utilized for phytoremediation. Further research is needed to evaluate the potential of zeolite-based composites for phytoremediation. Additionally, the development of nanocomposites with enhanced adsorption capacity would be necessary for more effective removal of pollutants.
Collapse
Affiliation(s)
- Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ayesha Javaid
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE.
| | - Bernardo Duarte
- MARE-Marine and Environmental Sciences Centre & ARNET-Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Heba Jarar
- Renewable Energy and Energy Efficiency Research Group, Research Institute for Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
13
|
Ullah S, Liu Q, Wang S, Jan AU, Sharif HMA, Ditta A, Wang G, Cheng H. Sources, impacts, factors affecting Cr uptake in plants, and mechanisms behind phytoremediation of Cr-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165726. [PMID: 37495153 DOI: 10.1016/j.scitotenv.2023.165726] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Chromium (Cr) is released into the environment through anthropogenic activities and has gained significant attention in the recent decade as environmental pollution. Its contamination has adverse effects on human health and the environment e.g. decreases soil fertility, alters microbial activity, and reduces plant growth. It can occur in different oxidation states, with Cr(VI) being the most toxic form. Cr contamination is a significant environmental and health issue, and phytoremediation offers a promising technology for remediating Cr-contaminated soils. Globally, over 400 hyperaccumulator plant species from 45 families have been identified which have the potential to remediate Cr-contaminated soils through phytoremediation. Phytoremediation can be achieved through various mechanisms, such as phytoextraction, phytovolatilization, phytodegradation, phytostabilization, phytostimulation, and rhizofiltration. Understanding the sources and impacts of Cr contamination, as well as the factors affecting Cr uptake in plants and remediation techniques such as phytoremediation and mechanisms behind it, is crucial for the development of effective phytoremediation strategies. Overall, phytoremediation offers a cost-effective and sustainable solution to the problem of Cr pollution. Further research is needed to identify plant species that are more efficient at accumulating Cr and to optimize phytoremediation methods for specific environmental conditions. With continued research and development, phytoremediation has the potential to become a widely adopted technique for the remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Sadeeq Ullah
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Shiyong Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Amin Ullah Jan
- Department of Biotechnology, Faculty of Science, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan
| | - Hafiz M Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Gang Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Flajšman M, Košmelj K, Grčman H, Ačko DK, Zupan M. Industrial hemp (Cannabis sativa L.)-a valuable alternative crop for growing in agricultural soils contaminated with heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115414-115429. [PMID: 37884708 PMCID: PMC10682123 DOI: 10.1007/s11356-023-30474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Hemp (Cannabis sativa L.) is a multiuse plant, which has been abundantly studied for phytoremediation purposes in recent years. The majority of experiments were performed in greenhouses with potted plants where hemp showed promising results. Only few studies tested hemp on site in heavy metal-polluted agricultural soil in real environmental conditions and practical assessments of hemp phytoremediation feasibility are lacking. We conducted a comprehensive study using 2 legal industrial hemp varieties (Futura 75 and Tisza) at three differently polluted locations (heavily polluted location, HP; moderately polluted location, MP; and slightly polluted location, SP) in the heavy metal contaminated Celje valley in Slovenia and determined the content of Pb, Zn, and Cd in 5 plant organs/tissues. The yield of each organ/tissue was determined as well to enable us to calculate the phytoremediation potential (PP). On average, plants grown in the HP location accumulated the highest values of all examined elements, followed by plants from the MP location and plants from the SP location, showing that the content of heavy metals in soil influences the accumulation in plants. Accumulation of Pb/Zn/Cd by plant organs/tissues was distributed in the following order: inflorescences (Pb-4.10/Zn-92.8/Cd-0.50 mg/kg) > seeds (Pb-1.79/Zn-92.6/Cd-0.27 mg/kg) > roots (Pb-1.15/Zn-15.0/Cd-0.44 mg/kg) > stem bark (Pb-0.42/Zn-12.4/Cd-0.23 mg/kg) > stem woody core (Pb-0.34/Zn-4.6/Cd-0.15 mg/kg). The only exception was for Cd, where roots accumulated a higher value than seed, yet lower than inflorescences. PP was calculated by multiplying hemp tissue/organ yield by the relative concentrations of heavy metal. The highest PP for Pb and Cd were achieved at the HP location (3.80 and 0.23 g/ha/vegetation period). On the other hand, tissue/organ yield was more important for high PP of Zn, where the SP location reached the highest PP for Zn (148.5 g/ha/vegetation period) due to the highest yields. Only seeds from HP and MP locations accumulated a too high content of Pb; otherwise, all other fibers and seeds can be safely used in the textile and food industry. Results of this study showed that hemp cannot be considered an efficient plant for the phytomanagement of contaminated areas. Nevertheless, hemp cultivation in heavy metal-polluted agricultural soils seems feasible since the majority of tissues/organs were not contaminated and different products can be obtained from various parts of the hemp plant.
Collapse
Affiliation(s)
- Marko Flajšman
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101 1000, Ljubljana, Slovenia.
| | - Katarina Košmelj
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101 1000, Ljubljana, Slovenia
| | - Helena Grčman
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101 1000, Ljubljana, Slovenia
| | - Darja Kocjan Ačko
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101 1000, Ljubljana, Slovenia
| | - Marko Zupan
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101 1000, Ljubljana, Slovenia
| |
Collapse
|
15
|
Wang J, Long J, Yang F, Yang X, Jiao W, Huang C. Open acid dissolution-Ammonia solution extraction-ICP OES rapid determination of 7 trace metal elements in soil. PLoS One 2023; 18:e0292168. [PMID: 37816018 PMCID: PMC10564144 DOI: 10.1371/journal.pone.0292168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
To overcome the corrosion of hydrofluoric acid on the ICP OES injection system in the acid dissolution system, this paper makes some improvements based on the traditional open digestion. The improved method does not require the complete removal of hydrofluoric acid. After appropriate digestion of the sample with a mixed acid, the solution can be transferred to a colorimetric tube containing ammonium hydroxide solution to give the final volume for analysis. In this paper, two-point standard curves are plotted using soil standards and process blanks, which is not only convenient but also overcomes the interference of the matrix effect. Through continuous experiments, the preferred ratio of mixed acid is 3 mL nitric acid + 5 mL hydrofluoric acid, and the concentration of ammonia solution is 0.5%. The spectral lines of the measured elements V (292.4), Cr (283.5), Co (228.6), Ni (231.6), Cu (324.7), Zn (213.8) and Pb (220.3) were determined. The method quantification limits of the seven measured elements V, Cr, Co, Ni, Cu, Zn and Pb were 0.909, 4.32, 0.269, 0.261, 0.968, 3.69 and 2.64 μg g-1, respectively, and the precision was 3.5%, 5.2%, 4.8%, 2.4%, 6.1% and 4.5%, respectively. After processing six national standard materials according to the experimental method, the measured values of each measured element were basically in agreement with the certified values, indicating that this method is fully feasible for the measurement of V, Cr, Co, Ni, Cu, Zn and Pb in soil. This method greatly improves the efficiency of pretreatment and is particularly suitable for analysing large batches of samples.
Collapse
Affiliation(s)
- Jiahan Wang
- Haikou Marine Geological Survey Center of China Geological Survey, Haikou, 571127, China
| | - Junqiao Long
- Haikou Marine Geological Survey Center of China Geological Survey, Haikou, 571127, China
| | - Feng Yang
- Haikou Marine Geological Survey Center of China Geological Survey, Haikou, 571127, China
| | - Xiujin Yang
- Haikou Marine Geological Survey Center of China Geological Survey, Haikou, 571127, China
| | - Wenguang Jiao
- Haikou Marine Geological Survey Center of China Geological Survey, Haikou, 571127, China
| | - Cheng Huang
- Haikou Marine Geological Survey Center of China Geological Survey, Haikou, 571127, China
| |
Collapse
|
16
|
Al-Huqail AA, Kumar P, Kumari S, Eid EM. Biosolids application enhances the growth of Aloe vera plants and provides a sustainable practice for nutrient recirculation in agricultural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104246-104257. [PMID: 37702869 DOI: 10.1007/s11356-023-29763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
In the present study, the fertilization potential of biosolids (sewage sludge; SS) for the cultivation of Aloe vera plants was investigated using block design. Pot experiments were conducted in this study using 50, 100, 150, and 200 g/kg of SS. Results showed that SS-fertilized soils significantly (p < 0.05) affected the proximate, biochemical, and heavy metal parameters of A. vera plants. In particular, the T4 treatment gave the best results with maximum plant height 62.21 ± 0.10 cm, number of leaves per plant 18.00 ± 4.00, shoot-to-root ratio 6:1, fresh weight 1972.10 ± 0.07 g per plant, dry weight 175.49 ± 0.15 g per plant, total chlorophyll content (TCC) 0.41 ± 0.02 mg/g fwt., carotenoids 0.25 ± 0.04 mg/g, total flavonoids 7.55 ± 0.05 mg/g, total tannins 3.87 ± 0.06 µg/g, ascorbic acid 532.14 ± 0.10 µg/g, superoxide dismutase (SOD) 46.28 ± 0.19 µg/g, catalase (CAT) 119.23 ± 0.17 µg/g, salicylic acid 3.05 ± 0.12 mg/ml and anthraquinones 0.45 ± 0.04 mg/ml, respectively. The proximate plant characteristics were 96.25 ± 2.71% moisture content, crude protein 0.93 ± 0.05%, crude fiber 5.78 ± 0.44%, crude lipid 3.25 ± 0.02%, lignin 10.74 ± 0.30%, cellulose 13.56 ± 1.06%, hemicellulose 7.24 ± 0.14%, ash 8.75 ± 0.03%, and carbohydrate contents 52.18 ± 1.10% in comparison with control treatment. The bioaccumulation factor showed that heavy metal accumulation was in the order of Cd < Ni < Cu < Pb < Cr < Zn < Fe. The prediction models developed on the basis of soil properties showed good fitness results for the prediction of heavy metal uptake by A. vera plants. The study presented a sustainable approach for managing SS in an eco-friendly way while producing good-quality A. vera plants.
Collapse
Affiliation(s)
- Arwa A Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India
- Research and Development Division, Society for AgroEnvironmental Sustainability, Dehradun, 248007, India
| | - Sonika Kumari
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India.
| | - Ebrahem M Eid
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| |
Collapse
|
17
|
C FC, Kamalesh T, Senthil Kumar P, Rangasamy G. An insights of organochlorine pesticides categories, properties, eco-toxicity and new developments in bioremediation process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122114. [PMID: 37379877 DOI: 10.1016/j.envpol.2023.122114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/21/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Organochlorine pesticides (OCPs) have been used in agriculture, increasing crop yields and representing a serious and persistent global contaminant that is harmful to the environment and human health. OCPs are typically bioaccumulative and persistent chemicals that can spread over long distances. The challenge is to reduce the impacts caused by OCPs, which can be achieved by treating OCPs in an appropriate soil and water environment. Therefore, this report summarizes the process of bioremediation with commercially available OCPs, considering their types, impacts, and characteristics in soil and water sources. The methods explained in this report were considered to be an effective and environmentally friendly technique because they result in the complete transformation of OCPs into a non-toxic end product. This report suggests that the bioremediation process can overcome the challenges and limitations of physical and chemical treatment for OCP removal. Advanced methods such as biosurfactants and genetically modified strains can be used to promote bioremediation of OCPs.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - T Kamalesh
- Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
18
|
Chen J, Liu SS, Wu Q, Huang WJ, Yang F, Wang YJ, He LX, Ying GG, Chen WL, Chen CE. Removal, fate, and bioavailability of fluoroquinolone antibiotics in a phytoremediation system with four wetland plants: Combing dynamic DGT and traditional methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163464. [PMID: 37062316 DOI: 10.1016/j.scitotenv.2023.163464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Phytoremediation is considered an effective technology for remediating antibiotic-contaminated water; however, its underlying mechanisms remain poorly understood. Therefore, this study investigated the phytoremediation potential of fluoroquinolone antibiotics (FQs) by different wetland plant species. The phytoremediation rates of ΣFQs were 46-69 %, and rhizosphere microorganism degradation (accounting for 90-93 %) dominated the FQ removal over that of plant uptake and hydrolysis. Dissipation of the FQs in the hydroponic system followed a first-order kinetic model. The joint action of the more powerful absorptive capacity of plants and stronger microbial degradation ability in the rhizosphere was the reason that Cyperus papyrus showed significantly higher FQ phytoremediation rates than the other three plant species, which implied that the plant species is a critical factor affecting phytoremediation efficiency. The FQ distribution in plant tissues decreased from root > stem > leaf, suggesting that FQs were more concentrated in the roots than in the aboveground tissues. Negative correlations between the diffusive gradient in thin films and root concentrations implied that these wetland plant species took up FQs mainly via active transport mechanism (requiring some vectors, perhaps via exudates); whereas, the process of root-to-stem transfer and upward transport represented passive transport, which mainly depended on transpiration. These results facilitate an improved understanding of phytoremediation processes and improve their future applications.
Collapse
Affiliation(s)
- Jun Chen
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources, Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Pearl River Water Resource Research Institute, Guangzhou 510611, China
| | - Shuang-Shuang Liu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Qiong Wu
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources, Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Pearl River Water Resource Research Institute, Guangzhou 510611, China
| | - Wei-Jie Huang
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources, Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Pearl River Water Resource Research Institute, Guangzhou 510611, China
| | - Fang Yang
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources, Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Pearl River Water Resource Research Institute, Guangzhou 510611, China
| | - Yi-Jie Wang
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources, Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Pearl River Water Resource Research Institute, Guangzhou 510611, China
| | - Lu-Xi He
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Wen-Long Chen
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources, Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Pearl River Water Resource Research Institute, Guangzhou 510611, China.
| | - Chang-Er Chen
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
19
|
Zainab N, Mehmood S, Amna Shafiq-Ur-Rehman, Munir A, Tanveer ZI, Nisa ZU, Imran M, Javed MT, Chaudhary HJ. Health risk assessment and bioaccumulation of potentially toxic metals from water, soil, and forages near coal mines of district Chakwal, Punjab, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5441-5466. [PMID: 37029254 DOI: 10.1007/s10653-023-01531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Water, forages, and soil contamination with potentially toxic metals (PTMs) through anthropogenic activities has become a significant environmental concern. It is crucial to find out the level of PTMs in water, soil, and forages near industrial areas. The PTMs enter the body of living organisms through these sources and have become a potential risk for humans and animals. Therefore, the present study aims at the health risk assessment of PTMs and their accumulation in soil, water, and forages of three tehsils (Kallar Kahar, Choa Saidan Shah, and Chakwal) in district Chakwal. Samples of wastewater, soil, and forages were collected from various sites of district Chakwal. PTMs detected in the present study were cadmium (Cd), chromium (Cr), lead (Pb), zinc (Zn), cobalt (Co), copper (Cu), and nickel (Ni), and their levels were measured through atomic absorption spectrophotometer (AAs GF95 graphite furnace auto sampler). Pollution load index (PLI), bio concentration factor (BCF), soil enrichment factors (EF), daily intake value (DIM), and health risk index (HRI) in sheep, cow, and buffalo were also analyzed. The results revealed that the mean concentration (mg/L) of Cd (0.72-0.91 mg/L), Cr (1.84-2.23 mg/L), Pb (0.95-3.22 mg/L), Co (0.74-2.93 mg/L), Cu (0.84-1.96 mg/L), and Ni (1.39-4.39 mg/L) in wastewater samples was higher than permissible limits set by WHO, NEQS, WWF, USEPA, and Pakistan in all three tehsils of district Chakwal. Similarly, in soil samples, concentrations of Cd (1.21-1.95 mg/kg), Cr (38.1-56.4 mg/kg), and Ni (28.3-55.9 mg/kg) were higher than their respective threshold values. The mean concentration of PTMs in forage samples (Parthenium hysterophorus, Mentha spicata, Justicia adhatoda, Calotropis procera, Xanthium strumarium, Amaranthaceae sp.) showed that maximum values of Cd (5.35-7.55 mg/kg), Cr (5.47-7.51 mg/kg), Pb (30-36 mg/kg), and Ni (12.6-57.5 mg/kg) were beyond their safe limit set for forages. PLI, BCF, and EF were > 1.0 for almost all the PTMs. The DIM and HRI for sheep were less than < 1.0 but for cows and buffalo were > 1.0. The current study showed that soil, water, and forages near coal mines area are contaminated with PTMs which enter the food chain and pose significant harm to humans and animals. In order to prevent their dangerous concentration in the food chain, regular assessment of PTMs present in soil, forages, irrigating water, and food is recommended.
Collapse
Affiliation(s)
- Nida Zainab
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Shehzad Mehmood
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Environmental Sciences, Comsats University Islamabad, Vehari, 61100, Pakistan
| | - Amna Shafiq-Ur-Rehman
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Department of Botany, University of Okara, Okara, 53900, Pakistan
- Department of Botany, Rawalpindi Women University, 6Th Road Satellite Town, Rawalpindi, Pakistan
| | - Adeela Munir
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | | | - Zaib Un Nisa
- Cotton Research Institute, Multan, Punjab, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, Comsats University Islamabad, Vehari, 61100, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | | |
Collapse
|
20
|
Bomfim NCP, Aguilar JV, Ferreira TC, Dos Santos BS, de Paiva WDS, de Souza LA, Camargos LS. Root development in Leucaena leucocephala (Lam.) de Wit enhances copper accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80245-80260. [PMID: 37294492 DOI: 10.1007/s11356-023-28152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Potentially toxic elements (PTE) in soil like copper (Cu) have been common in agricultural and mining areas worldwide. The sustainable remediation of these areas has been shown to have high socio-environmental relevance and phytoremediation is one of the green technologies to be considered. The challenge is to identify species that are tolerant to PTE, and to assess their phytoremediation potential. The objective of this study was to evaluate the physiological response of Leucaena leucocephala (Lam.) de Wit and to determine the species tolerance and phytoremediation potential to concentrations of Cu in the soil (100, 200, 300, 400 and 500 mg/dm3). The photosynthetic rate was not affected, while the content of chlorophylls decreased as Cu concentrations increased. There was an increased in stomatal conductance and water use efficiency from the treatment of 300. The root biomass and the length were bigger than the shoots, in the treatments above 300. Cu accumulation was greater in the roots than in the shoot of the plants, thus, the Cu translocation index to the shoot was lower. The ability to absorb and accumulate, mainly, Cu in the roots, allowed the development and growth of plants, since the parameters of photosynthesis and biomass accumulation were not affected by the Cu excess. This accumulation in the roots is characterized as a strategy for the phytostabilization of Cu. Therefore, L. leucocephala is tolerant to the Cu concentrations evaluated and has a potential phytoremediation of Cu in the soil.
Collapse
Affiliation(s)
- Nayane Cristina Pires Bomfim
- Department of Biology and Zootechny, School of Engineering, Ilha Solteira. Plant Metabolism Physiology Laboratory. Rua Monção, São Paulo State University (Unesp), 226, Rua Monção, 226, Zona Norte, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Jailson Vieira Aguilar
- Department of Biology and Zootechny, School of Engineering, Ilha Solteira. Plant Metabolism Physiology Laboratory. Rua Monção, São Paulo State University (Unesp), 226, Rua Monção, 226, Zona Norte, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Tassia Caroline Ferreira
- Department of Biology and Zootechny, School of Engineering, Ilha Solteira. Plant Metabolism Physiology Laboratory. Rua Monção, São Paulo State University (Unesp), 226, Rua Monção, 226, Zona Norte, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Beatriz Silvério Dos Santos
- Department of Biology and Zootechny, School of Engineering, Ilha Solteira. Plant Metabolism Physiology Laboratory. Rua Monção, São Paulo State University (Unesp), 226, Rua Monção, 226, Zona Norte, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Wesller da Silva de Paiva
- Department of Biology and Zootechny, School of Engineering, Ilha Solteira. Plant Metabolism Physiology Laboratory. Rua Monção, São Paulo State University (Unesp), 226, Rua Monção, 226, Zona Norte, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Lucas Anjos de Souza
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, 75901-970, Rio Verde, Goiás, Brazil
| | - Liliane Santos Camargos
- Department of Biology and Zootechny, School of Engineering, Ilha Solteira. Plant Metabolism Physiology Laboratory. Rua Monção, São Paulo State University (Unesp), 226, Rua Monção, 226, Zona Norte, Ilha Solteira, São Paulo, 15385-000, Brazil.
| |
Collapse
|
21
|
Menhas S, Yang X, Hayat K, Bundschuh J, Chen X, Hui N, Zhang D, Chu S, Zhou Y, Ali EF, Shahid M, Rinklebe J, Lee SS, Shaheen SM, Zhou P. Pleiotropic melatonin-mediated responses on growth and cadmium phytoextraction of Brassica napus: A bioecological trial for enhancing phytoremediation of soil cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131862. [PMID: 37329597 DOI: 10.1016/j.jhazmat.2023.131862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Melatonin (MT) has recently gained significant scientific interest, though its mechanism of action in enhancing plant vigor, cadmium (Cd) tolerance, and Cd phytoremediation processes are poorly understood. Therefore, here we investigated the beneficial role of MT in improving growth and Cd remediation potential of rapeseed (Brassica napus). Plants, with or without MT (200 µM L-1), were subjected to Cd stress (30 mg kg1). Without MT, higher Cd accumulation (up to 99%) negatively affected plant growth and developmental feature as well as altered expression of several key genes (DEGs) involved in different molecular pathways of B. napus. As compared to only Cd-stressed counterparts, MT-treated plants exhibited better physiological performance as indicated by improved leaf photosynthetic and gaseous exchange processes (3-48%) followed by plant growth (up to 50%), fresh plant biomass (up to 45%), dry plant biomass (up to 32%), and growth tolerance indices (up to 50%) under Cd exposure. MT application enhanced Cd tolerance and phytoremediation capacity of B. napus by augmenting (1) Cd accumulation in plant tissues and its translocation to above-ground parts (by up to 45.0%), (2) Cd distribution in the leaf cell wall (by up to 42%), and (3) Cd detoxification by elevating phytochelatins (by up to 8%) and metallothioneins (by upto 14%) biosynthesis, in comparison to Cd-treated plants. MT played a protective role in stabilizing hydrogen peroxide and malondialdehyde levels in the tissue of the Cd-treated plants by enhancing the content of osmolytes (proline and total soluble protein) and activities of antioxidant enzymes (SOD, CAT, APX and GR). Transcriptomic analysis revealed that MT regulated 1809 differentially expressed genes (828 up and 981 down) together with 297 commonly expressed DEGs (CK vs Cd and Cd vs CdMT groups) involved in plant-pathogen interaction pathway, protein processing in the endoplasmic reticulum pathway, mitogen-activated protein kinase signaling pathway, and plant hormone signal transduction pathway which ultimately promoted plant growth and Cd remediation potential in the Cd-stressed plants. These results provide insights into the unexplored pleiotropic beneficial action of MT in enhancing in the growth and Cd phytoextraction potential of B. napus, paving the way for developing Cd-tolerant oilseed crops with higher remediation capacity as a bioecological trial for enhancing phytoremediation of hazardous toxic metals in the environment.
Collapse
Affiliation(s)
- Saiqa Menhas
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jochen Bundschuh
- Department of Earth and Environmental Sciences, National Chung Cheng University, Taiwan, ROC; School of Civil Engineering and Surveying, University of Southern Queensland, Australia
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Yuanfei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, South Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China.
| |
Collapse
|
22
|
Wang W, Man Z, Li X, Chen R, You Z, Pan T, Dai X, Xiao H, Liu F. Response mechanism and rapid detection of phenotypic information in rice root under heavy metal stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131010. [PMID: 36801724 DOI: 10.1016/j.jhazmat.2023.131010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The root is an important organ affecting cadmium accumulation in grains, but there is no comprehensive research involving rice root phenotype under cadmium stress yet. To assess the effect of cadmium on root phenotypes, this paper investigated the response mechanism of phenotypic information including cadmium accumulation, adversity physiology, morphological parameters, and microstructure characteristics, and explored rapid detection methods of cadmium accumulation and adversity physiology. We found that cadmium had the effect of "low-promotion and high-inhibition" on root phenotypes. In addition, the rapid detection of cadmium (Cd), soluble protein (SP), and malondialdehyde (MDA) were achieved based on spectroscopic technology and chemometrics, where the optimal prediction model was least squares support vector machine (LS-SVM) based on the full spectrum (Rp=0.9958) for Cd, competitive adaptive reweighted sampling-extreme learning machine (CARS-ELM) (Rp=0.9161) for SP and CARS-ELM (Rp=0.9021) for MDA, all with Rp higher than 0.9. Surprisingly, it took only about 3 min, which was more than 90% reduction in detection time compared with laboratory analysis, demonstrating the excellent ability of spectroscopy for root phenotype detection. These results reveal response mechanism to heavy metal and provide rapid detection method for phenotypic information, which can substantially contribute to crop heavy metal control and food safety supervision.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zun Man
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaolong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhengkai You
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tiantian Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaorong Dai
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Hang Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Priya AK, Muruganandam M, Ali SS, Kornaros M. Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. TOXICS 2023; 11:toxics11050422. [PMID: 37235237 DOI: 10.3390/toxics11050422] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Pollution from heavy metals is one of the significant environmental concerns facing the world today. Human activities, such as mining, farming, and manufacturing plant operations, can allow them access to the environment. Heavy metals polluting soil can harm crops, change the food chain, and endanger human health. Thus, the overarching goal for humans and the environment should be the avoidance of soil contamination by heavy metals. Heavy metals persistently present in the soil can be absorbed by plant tissues, enter the biosphere, and accumulate in the trophic levels of the food chain. The removal of heavy metals from contaminated soil can be accomplished using various physical, synthetic, and natural remediation techniques (both in situ and ex situ). The most controllable (affordable and eco-friendly) method among these is phytoremediation. The removal of heavy metal defilements can be accomplished using phytoremediation techniques, including phytoextraction, phytovolatilization, phytostabilization, and phytofiltration. The bioavailability of heavy metals in soil and the biomass of plants are the two main factors affecting how effectively phytoremediation works. The focus in phytoremediation and phytomining is on new metal hyperaccumulators with high efficiency. Subsequently, this study comprehensively examines different frameworks and biotechnological techniques available for eliminating heavy metals according to environmental guidelines, underscoring the difficulties and limitations of phytoremediation and its potential application in the clean-up of other harmful pollutants. Additionally, we share in-depth experience of safe removing the plants used in phytoremediation-a factor frequently overlooked when choosing plants to remove heavy metals in contaminated conditions.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun 248195, India
| | - Muthiah Muruganandam
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun 248195, India
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus-Rio, 26504 Patras, Greece
| |
Collapse
|
24
|
Niu L, Li C, Wang W, Zhang J, Scali M, Li W, Liu H, Tai F, Hu X, Wu X. Cadmium tolerance and hyperaccumulation in plants - A proteomic perspective of phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114882. [PMID: 37037105 DOI: 10.1016/j.ecoenv.2023.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is a major environmental pollutant and poses a risk of transfer into the food chain through contaminated plants. Mechanisms underlying Cd tolerance and hyperaccumulation in plants are not fully understood. Proteomics-based approaches facilitate an in-depth understanding of plant responses to Cd stress at the systemic level by identifying Cd-inducible differentially abundant proteins (DAPs). In this review, we summarize studies related to proteomic changes associated with Cd-tolerance mechanisms in Cd-tolerant crops and Cd-hyperaccumulating plants, especially the similarities and differences across plant species. The enhanced DAPs identified through proteomic studies can be potential targets for developing Cd-hyperaccumulators to remediate Cd-contaminated environments and Cd-tolerant crops with low Cd content in the edible organs. This is of great significance for ensuring the food security of an exponentially growing global population. Finally, we discuss the methodological drawbacks in current proteomic studies and propose that better protocols and advanced techniques should be utilized to further strengthen the reliability and applicability of future Cd-stress-related studies in plants. This review provides insights into the improvement of phytoremediation efficiency and an in-depth study of the molecular mechanisms of Cd enrichment in plants.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chunyang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
25
|
Bayuo J, Rwiza MJ, Sillanpää M, Mtei KM. Removal of heavy metals from binary and multicomponent adsorption systems using various adsorbents - a systematic review. RSC Adv 2023; 13:13052-13093. [PMID: 37124024 PMCID: PMC10140672 DOI: 10.1039/d3ra01660a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
The ecosystem and human health are both significantly affected by the occurrence of potentially harmful heavy metals in the aquatic environment. In general, wastewater comprises an array of heavy metals, and the existence of other competing heavy metal ions might affect the adsorptive elimination of one heavy metal ion. Therefore, to fully comprehend the adsorbent's efficiency and practical applications, the abatement of heavy metals in multicomponent systems is important. In the current study, the multicomponent adsorption of heavy metals from different complex mixtures, such as binary, ternary, quaternary, and quinary solutions, utilizing various adsorbents are reviewed in detail. According to the systematic review, the adsorbents made from locally and naturally occurring materials, such as biomass, feedstocks, and industrial and agricultural waste, are effective and promising in removing heavy metals from complex water systems. The systematic study further discovered that numerous studies evaluate the adsorption characteristics of an adsorbent in a multicomponent system using various important independent adsorption parameters. These independent adsorption parameters include reaction time, solution pH, agitation speed, adsorbent dosage, initial metal ion concentration, ionic strength as well as reaction temperature, which were found to significantly affect the multicomponent sorption of heavy metals. Furthermore, through the application of the multicomponent adsorption isotherms, the competitive heavy metals sorption mechanisms were identified and characterized by three primary kinds of interactive effects including synergism, antagonism, and non-interaction. Despite the enormous amount of research and extensive data on the capability of different adsorbents, several significant drawbacks hinder adsorbents from being used practically and economically to remove heavy metal ions from multicomponent systems. As a result, the current systematic review provides insights and perspectives for further studies through the thorough and reliable analysis of the relevant literature on heavy metals removal from multicomponent systems.
Collapse
Affiliation(s)
- Jonas Bayuo
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
- Department of Science Education, School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS) Postal Box 24 Navrongo Upper East Region Ghana
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg P. O. Box 17011 Doornfontein 2028 South Africa
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
| |
Collapse
|
26
|
Nixon Nonh D, Aw S, Siaka S, Livet A, Sylvestre Yapo N, Bousserrhine N. Evaluation of the lead removal capacity by the adsorption process of Corbula trigona shell powder: modeling and optimization through reponse surface methodology. RSC Adv 2023; 13:11346-11355. [PMID: 37057272 PMCID: PMC10088489 DOI: 10.1039/d3ra00562c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
This study is based on the evaluation of the adsorption process using Corbula trigona shell powder to remove lead from aqueous solution in a batch mode. Different analytical techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, and EDS-coupled scanning electron microscopy, were used to characterize the shell powder before and after lead treatment. Regarding the pollutant removal, a Plackett-Burman design (PBD) was first used to determine the influencing factors from the following experimental domain: solution pH (3-9), adsorbent mass (0.1-0.5 g), contact time (40 -240 min), initial pollutant concentration (10 -60 mg L-1), and adsorbent size (100 -200 μm). The respective contributions of the various factors listed above are 31.7%, 30.51%, 25.17%, 12.44%, and 0.18%. As a result, solution pH, adsorbent mass, contact time, and initial pollutant concentration were selected to optimize the lead removal process using the composite central plan. The optimal lead removal conditions were 99.028% by setting the solution pH to 4.5, initial lead concentration to 47 mg L-1, contact time to 125 min, and adsorbent mass to 0.2 g. In addition, it was found that the composite central plan could be a reliable statistical tool to model and determine the optimal conditions.
Collapse
Affiliation(s)
- Dan Nixon Nonh
- Laboratoire des Procédés Industriels, de Synthèse, de L'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix HOUPHOUËT-BOIGNY BP 1093 Yamoussoukro Ivory Coast +2250748296357
| | - Sadat Aw
- Laboratoire des Procédés Industriels, de Synthèse, de L'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix HOUPHOUËT-BOIGNY BP 1093 Yamoussoukro Ivory Coast +2250748296357
| | - Sorho Siaka
- Laboratoire des Procédés Industriels, de Synthèse, de L'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix HOUPHOUËT-BOIGNY BP 1093 Yamoussoukro Ivory Coast +2250748296357
| | - Alexandre Livet
- Laboratoire Eau, Environnement Systèmes Urbains (LEESU), Université Paris Est Créteil (UPEC), Faculté des Sciences et Technologie 61 Avenue Général De Gaulle 94010 Créteil Cedex France
| | - N'Zébo Sylvestre Yapo
- Laboratoire des Procédés Industriels, de Synthèse, de L'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix HOUPHOUËT-BOIGNY BP 1093 Yamoussoukro Ivory Coast +2250748296357
| | - Noureddine Bousserrhine
- Laboratoire Eau, Environnement Systèmes Urbains (LEESU), Université Paris Est Créteil (UPEC), Faculté des Sciences et Technologie 61 Avenue Général De Gaulle 94010 Créteil Cedex France
| |
Collapse
|
27
|
Kumar A, Thakur A, Panesar PS. A review on the industrial wastewater with the efficient treatment techniques. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
28
|
Naseer A, Andleeb S, Basit A, Ali S, Ud-Din MS, Ali NM, Liaqat I, Nazir A. Efficacy of cow and buffalo dung on vermiremediation and phytoremediation of heavy metals via Fourier-transform infrared spectroscopy and comet assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37912-37928. [PMID: 36575256 DOI: 10.1007/s11356-022-24714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal contamination raised significant concerns throughout the world. The current research aimed to evaluate the impact of organic manure (cow dung and buffalo dung) on vermiremediation and phytoremediation and to remediate heavy metals, i.e., cadmium, lead, and chromium, from artificial contaminated soil via both remediation techniques. The impact of livestock manure was evaluated for the first time which could be effective in in situ as well as ex situ studies. Eisenia fetida, Pheretima lignicola, and Spinacia oleracea were used for the remediation process. Results revealed that E. fetida tolerated lead at 280 mg, cadmium at 150 mg, and chromium at 860 mg compared to P. lignicola. The growth and reproduction of E. fetida were efficient in the cow dung manure compared to buffalo dung. Similarly, seed germination and growth of Spinacia oleracea were better in cow dung media compared to buffalo dung. Bioaccumulation factor showed that E. fetida showed a higher accumulation of heavy metals in their tissues when vermi + phytoremediation was jointly applied (9.50 mg/l of Pb, 24.166 of Cd, and 6.695 of Cr). Fourier-transform infrared spectroscopy indicated that heavy metals had no drastic effects on E. fetida and S. oleracea. Similarly, comet assay revealed that heavy metals had no genotoxic effect on the E. fetida and S. oleracea. It was concluded that both E. fetida and S. oleracea are appropriate for heavy metals remediation in cow dung manure.
Collapse
Affiliation(s)
- Anum Naseer
- Biotechnology and Vermi-Technology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Saiqa Andleeb
- Biotechnology and Vermi-Technology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan.
| | - Abdul Basit
- Biotechnology and Vermi-Technology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Nazish Mazhar Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Iram Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Aisha Nazir
- Institute of Botany, University of Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| |
Collapse
|
29
|
Tindanzor E, Guo Z, Li T, Xu R, Xiao X, Peng C. Leaching and characterization studies of heavy metals in contaminated soil using sequenced reagents of oxalic acid, citric acid, and a copolymer of maleic and acrylic acid instead of ethylenediaminetetraacetic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6919-6934. [PMID: 36018405 DOI: 10.1007/s11356-022-22634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
In this work, the removal performance of three environmentally friendly reagents, oxalic acid (OA), citric acid (CA), and a copolymer of maleic and acrylic acid (PMAA), on heavy metals in polluted soil was studied at the optimum conditions and compared their sequenced performance. The results showed that the consecutive washing with the individual acids significantly improved the removal percentage of heavy metals in the soil compared to that of EDTA (10.2%, 71.3%, 29.8%, 61.6%, and 52.4% removal for As, Cd, Cu, Pb, and Zn, respectively). The removal of As, Cd, Cu, Pb, and Zn in the sequence of CA-OA was 65.6%, 79%, 59.1%, 64.6%, and 63.5%, respectively. In addition, the organic acids had little influence on the soil physicochemical properties after washing with slight reductions of acidity (pH) and soil organic matter (SOM), which are the major determinants of the usability of washed soils for plant growth. The germination rate of Sorghum bicolor in CA-OA-washed soils reached over 70% on the 7th day. CA-OA-washed soils collectively stand out in using washed soils for plant growth with the following advantages: simultaneous removal of cationic and anionic metals, less harmful impact on soil properties, and successful support for the germination of crops. Based on the findings, we recommend the CA-OA sequence as the best alternative to EDTA with higher metal removal efficiency and germination success.
Collapse
Affiliation(s)
- Eric Tindanzor
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
| | - Tianshuang Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
30
|
Danyal Y, Mahmood K, Ullah S, Rahim A, Raheem G, Khan AH, Ullah A. Phytoremediation of industrial effluents assisted by plant growth promoting bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5296-5311. [PMID: 36402881 DOI: 10.1007/s11356-022-23967-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Industrialization plays a crucial role in the economic development of a country; however, the effluents produced as a byproduct generally contain toxic substances which are detrimental to living organisms. In this regard, it is essential to treat these toxic effluents before exposing them to the natural environment by selecting the most appropriate method accordingly. Several techniques are used to remediate industrial effluents including physical, chemical, and biological. Although some physical and chemical remediation technologies are of substantially important in remediation of industrial effluents, however, these technologies are either expensive to be applied by developing countries or not suitable for remediation of all kinds of effluents. In contrast, biological remediation is cost effective, nature friendly, and easy to use for almost all kinds of effluents. Among biological remediation strategies, phytoremediation is considered to be the most suitable method for remediation of industrial effluents; however, the phytoremediation process is slow, takes time in application and some effluents even affect plants growth and development. Alternately, plant microbe interactions could be a winning partner to remediate industrial effluents more efficiently. Among the microbes, plant growth promoting bacteria (PGPB) not only improve plant growth but also help in degradation, sequestration, volatilization, solubilization, mobilization, and bioleaching of industrial effluents which subsequently improve the phytoremediation process. The current study discusses the role of PGPB in enhancing the phytoremediation processes of industrial effluents.
Collapse
Affiliation(s)
- Youshaa Danyal
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Kainat Mahmood
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Shariat Ullah
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Abdur Rahim
- Department of Zoology, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Gul Raheem
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Abid Ullah
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
31
|
Golia EE, Chartodiplomenou MA, Papadimou SG, Kantzou OD, Tsiropoulos NG. Influence of soil inorganic amendments on heavy metal accumulation by leafy vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8617-8632. [PMID: 34796440 DOI: 10.1007/s11356-021-17420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to assess the effect of four inorganic soil amendments, such as lime (CaCO3), red mud consisting of 75% hematite (Fe2O3), gypsum (CaSO4·2H2O), and Al oxide (Al2O3), of an alkaline heavy metal-contaminated soil. For this purpose, a pot experiment was conducted by physically mixing individual six subsamples of a soil sample collected from Thessaly area with four inorganic soil amendments along with two leafy plants, spinach and lettuce. Al oxide causes the maximum reduction of the water-soluble Cu concentration, as its concentrations is no longer detectable. The Cu availability index decreases when aluminum oxide was used. The use of gypsum and red mud caused almost equal reduction while the smallest decrease was caused by the use of lime. The Zn availability index decreased equally when aluminum oxide and gypsum were mixed with the soil sample. The highest reduction of Cu and Zn transfer coefficient (TC) was observed when the Al2O3 was used. In spinach, Zn TC reduction was 39.8% and Cu TC reduction was 41.0%. In lettuce, the addition of Al2O3 led to Cu TC reduction of over 37.3% and Zn TC reduction of up to 38.7%. Generally, Al2O3 nanoparticles may function as suitable sorbents for the removal of Zn and Cu from soil samples, with an increasing effectiveness in spinach rather than lettuce. Liming materials seem to increase the soil alkalinity and promote the complexation of soluble heavy metals with hydroxide ions leading to immobilization of heavy metals in soil and reduce their amount in leafy vegetables. Remediation of contaminated soils is considered necessary to reduce environmental risks and to achieve the means available to increase agricultural production of safe and quality food.
Collapse
Affiliation(s)
- Evangelia E Golia
- Department of Agriculture Crop Production and Rural Environment, Laboratory of Soil Science, University of Thessaly, Fytokou Street, 384 46, Volos, Greece.
- Department of Agriculture, Laboratory of Soil Science, Aristotle University of Thessaloniki, University Campus, 541 24, Thessaloniki, Greece.
| | - Maria-Anna Chartodiplomenou
- Department of Agriculture Crop Production and Rural Environment, Laboratory of Soil Science, University of Thessaly, Fytokou Street, 384 46, Volos, Greece
| | - Sotiria G Papadimou
- Department of Agriculture Crop Production and Rural Environment, Laboratory of Analytical Chemistry and Pesticides Laboratory, University of Thessaly, Fytokou Street, 384 46, Volos, Greece
| | - Ourania-Despoina Kantzou
- Department of Agriculture Crop Production and Rural Environment, Laboratory of Soil Science, University of Thessaly, Fytokou Street, 384 46, Volos, Greece
| | - Nikolaos G Tsiropoulos
- Department of Agriculture Crop Production and Rural Environment, Laboratory of Analytical Chemistry and Pesticides Laboratory, University of Thessaly, Fytokou Street, 384 46, Volos, Greece
| |
Collapse
|
32
|
Luyckx M, Hausman JF, Guerriero G, Lutts S. Silicon reduces zinc absorption and triggers oxidative tolerance processes without impacting growth in young plants of hemp (Cannabis sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:943-955. [PMID: 35907072 DOI: 10.1007/s11356-022-21797-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Hemp (Cannabis sativa L.) is a promising crop for non-food agricultural production on soils contaminated by moderate doses of heavy metals, while silicon, as a beneficial element, is frequently reported to improve stressed plant behavior. Using a hydroponic system, plants of Cannabis sativa (cv. Santhica 27) were exposed for 1 week to 100 µM Zn in the presence or absence of 2 mM Si. Zinc accumulated in all plant organs but was mainly sequestered in the roots. Additional Si reduced Zn absorption but had no impact on Zn translocation. Zn accumulation had a slight negative impact on leaf number, stem length, and chlorophyll content, and additional Si did not mitigate these symptoms. Exogenous Si reduced the Zn-induced membrane lipid peroxidation (assessed by malondialdehyde quantification) and increased the total antioxidant activities estimated by the FRAP index. In the absence of Si, leaf phytochelatin and total glutathione were the highest in Zn-treated plants and Si significantly decreased their concentrations.
Collapse
Affiliation(s)
- Marie Luyckx
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute - Agronomy (ELIA), Université Catholique de Louvain, 5 (Bte13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| | - Jean-François Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute - Agronomy (ELIA), Université Catholique de Louvain, 5 (Bte13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
33
|
Yang W, Cao M. Synthesis of ZIF-8@GO-COOH and its adsorption for Cu(II) and Pb(II) from water: capability and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
González-González RB, Flores-Contreras EA, Parra-Saldívar R, Iqbal HMN. Bio-removal of emerging pollutants by advanced bioremediation techniques. ENVIRONMENTAL RESEARCH 2022; 214:113936. [PMID: 35932833 DOI: 10.1016/j.envres.2022.113936] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the relevance of bioremediation techniques for the removal of emerging pollutants (EPs). The EPs are chemical or biological pollutants that are not currently monitored or regulated by environmental authorities, but which can enter the environment and cause harmful effects to the environment and human health. In recent times, an ample range of EPs have been found in water bodies, where they can unbalance ecosystems and cause negative effects on non-target species. In addition, some EPs have shown high rates of bioaccumulation in aquatic species, thus affecting the safety and quality of seafood. The negative impacts of emerging pollutants, their wide distribution in the environment, their bioaccumulation rates, and their resistance to wastewater treatment plants processes have led to research on sustainable remediation. Remediation techniques have been recently directed to advanced biological remediation technologies. Such technologies have exhibited numerous advantages like in-situ remediation, low costs, eco-friendliness, high public acceptance, and so on. Thus, the present review has compiled the most recent studies on bioremediation techniques for water decontamination from emerging pollutants to extend the current knowledge on sustainable remediation technologies. Biological emerging contaminants, agrochemicals, endocrine-disrupting chemicals, and pharmaceutical and personal care products were considered for this review study, and their removal by bioremediation techniques involving plants, bacteria, microalgae, and fungi. Finally, further research opportunities are presented based on current challenges from an economic, biological, and operation perspective.
Collapse
Affiliation(s)
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
35
|
Gassoumi B, Dlala NA, Echabaane M, Ghalla H, Zhou Y, Castro ME, Melendez FJ, Leila N, Madi F, Chaabane RB. Adsorption of toxic and non-toxic metals with new model of CX[4]: Experimental and computational investigation, Spectroscopic, QTAIM, and Antibacterial activity analyses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
Feng LA, Liang B, Zeng X, Shi C, Yin H, Feng Y, Chen Y, Yu Q. Engineered bacterium-binding protein promotes root recruitment of functional bacteria for enhanced cadmium removal from wastewater by phytoremediation. WATER RESEARCH 2022; 221:118746. [PMID: 35738062 DOI: 10.1016/j.watres.2022.118746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Functional bacteria promote the efficiency of phytoremediation by enhancing plant growth and participating in decontamination. However, their activity is frequently compromised by the weakness of their interaction with plant roots. In this study, we designed the artificial protein LcGC composed of a bacterium-binding domain, a GFP fluorescence reporter, and a carbohydrate-binding domain to function as a physical contact between functional bacteria and plant roots. This protein was then expressed in an engineered yeast cell factory and extracted to assess its effect on rhizosphere microbiome composition, plant growth, and cadmium removal in a simulated phytoremediation system containing the remediation plant Lemna minor and the functional heavy metal-capturing bacteria Cupriavidus taiwanensis and Pseudomonas putida. LcGC efficiently bound bacterial cell wall components and glucan, endowing it high efficiency to bind both functional bacteria and plant roots. Scanning microscopy and microbiome analysis revealed that LcGC enhanced root recruitment and colonization of functional bacteria on the root surfaces. Furthermore, LcGC with the aid of single C. taiwanensis or of C. taiwanensis and P. putida in combination promoted plant growth, enhanced tolerance to cadmium-induced oxidative stress, and consequently improved cadmium-removing capacity of the plants, with the percent of cadmium removal reaching up to 91% for LcGC plus C. taiwanensis, and to 96% for LcGC plus C. taiwanensis and P. putida on day 7. This study provided a physical contact-based strategy to enhance the interaction between functional microbes and plant roots for efficient phytoremediation.
Collapse
Affiliation(s)
- Li-An Feng
- Department of Microbiology, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Boyuan Liang
- Department of Microbiology, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xinlin Zeng
- Department of Microbiology, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Hongda Yin
- Department of Microbiology, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yuming Feng
- Department of Microbiology, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yuqiao Chen
- Department of Microbiology, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Qilin Yu
- Department of Microbiology, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
37
|
Recent Advances and Future Perspectives of Polymer-Based Magnetic Nanomaterials for Detection and Removal of Radionuclides: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Garg VK, Tanta A, Lal Srivastav A, Tiwari MK, Sharma A, Kanwar VS. Water quality assessment using synchrotron-based TXRF. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10759. [PMID: 35796043 DOI: 10.1002/wer.10759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The pollutants released from pharmaceutical, steel, paper, and battery industries into water cause stress on the natural ecosystems, may mix with soil and water, enter into human food chain, and hence cause irreparable damage to the biotic system. Hence, the appropriate monitoring of water along with determination of heavy metals is very important for human beings. In present paper, total reflection X-ray fluorescence (TXRF) spectrometry technique is employed to determine the level of different contaminants in the water samples gathered from the various sites of an identified industrial area. Experimentation is carried out at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore-India by using TXRF, which is one the advance techniques of element determination up to ppb levels. The elemental concentration of Cl, K, Ca, Fe, Cu, Zn, Ga, Br, Sr, As, Pb, and Ni is quantified and compared with the limits established by the WHO (World Health Organization) and BIS (Bureau of Indian Standard) guidelines regarding drinking water use. The levels of the Pb, Fe, As, Ni, Cr, Co, and Mn exceeded the values suggested by WHO and BIS at some locations/sites. To better understand the situation, water quality parameters such as Water Quality Index (WQI), Heavy metal Pollution Index (HPI), Contamination Index (CI), Metal Enrichment Index (MEI), and Heavy Metal Evaluation Index (HEI) have also been assessed for all the sites close to industrial hub. Among all sites except at A3 and A6, WQI is found to be much greater than WHO and BIS established limit. Level of arsenic in the water at A1 location was found 73 ppb. However, lead metal in water was found to be very high at all the six studied locations, and at A1 location, it is found extremely high 2613 ppb. Therefore, water at A1 and A2 sites is found to be unfit for drinking. PRACTITIONER POINTS: Total reflection X-ray fluorescence (TXRF) spectrometry technique is employed to determine the level of different contaminants in the water samples The elemental concentration of Cl, K, Ca, Fe, Cu, Zn, Ga, Br, Sr, As, Pb, and Ni is quantified and compared with the limits prescribed by the WHO Water Quality Index (WQI), Heavy metal Pollution Index (HPI), Contamination Index (CI), Metal Enrichment Index (MEI), and Heavy Metal Enrichment Index (MEI) have also been assessed for all the sites Water at some sites is found unfit for drinking purpose. Based on the observations, some remedial measures are suggested to reduce the level of water contaminants up to desired levels.
Collapse
Affiliation(s)
- Vijay Kumar Garg
- School of Engineering and Technology, Chitkara University, Solan, India
| | - Ankush Tanta
- School of Engineering and Technology, Chitkara University, Solan, India
| | | | - M K Tiwari
- Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Ajay Sharma
- School of Engineering and Technology, Chitkara University, Solan, India
| | | |
Collapse
|
39
|
Phytoremediation of Heavy-Metals-Contaminated Soils: A Short-Term Trial Involving Two Willow Species from Gloucester WillowBank in the UK. MINERALS 2022. [DOI: 10.3390/min12050519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Phytoremediation, as a bioremediation process in which plants are used to remove contaminants from an environment, has proved to be a practical and low-cost strategy for recovering mining-affected areas. This study aims to assess the potential for use in phytoremediation of two willow species, Salix viminalis and Salix dasyclados, by testing their potential for cleaning-up a range of soils with differing heavy metal concentrations: Pb (111, 141, 192 and 249 mg /kg), Zn (778.6, 1482, 2734 and 4411 mg/kg) and Cd (3.00, 5.03, 9.14 and 16.07 mg/kg). The extracted metals were preferentially translocated to the leaves with considerably higher concentrations and relative BAFs in the case of S. viminalis. The highest recorded Zn concentration of over 0.5% was found in the leaves of S. viminalis growing in soil 4. However, under the conditions of the experiments, S. dasyclados showed greater potential for use in phytoremediation, especially if coupled with use of biomass for energy production. An assessment of the suitability of willow species in this role, with regard to wider aspects involved, such as use of resultant biomass and/or waste management, revealed good potential. Willows are fast growing, grow vigorously from coppiced stumps and have extensive root systems. Therefore, their use in bioenergy production through pyrolysis or combustion, coupled with flue gas screening, is strongly advised.
Collapse
|
40
|
Hassan SSM, Abdel Rahman EM, El-Subruiti GM, Kamel AH, Diab HM. Removal of Uranium-238, Thorium-232, and Potassium-40 from Wastewater via Adsorption on Multiwalled Carbon Nanotubes. ACS OMEGA 2022; 7:12342-12353. [PMID: 35449914 PMCID: PMC9016888 DOI: 10.1021/acsomega.2c00819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The optimum conditions for the removal of uranium-238, thorium-232, and potassium-40 from wastewater and the discharge of nuclear facilities using multiwalled carbon nanotubes (CNTs) are described. The adsorption mechanism is mainly attributed to chemical interactions between the metal ions and surface functional groups of the CNTs. Batch adsorption experiments are carried out in order to study the effect of different parameters such as pH, contact time, initial metal ion concentration, adsorbent dose, and temperatures. Maximum metal removal (>98%) from solutions containing 20-120 Bq/L metal ions is achieved using a contact time of 15 min, a pH of 6.0, and 10 mg/L CNTs. The effect of temperature on the kinetics and equilibrium of adsorption on CNT particles is examined. Consistent with an exothermic reaction, an increase in the temperature resulted in an increase in the adsorption rate. Langmuir, Freundlich, and Dubinin-Radushkevich isotherms are applied to the data obtained at various temperatures. The Langmuir adsorption model is the best for data interpretations. The kinetics of adsorption reveals a pseudo-second-order mechanism. Thermodynamic parameters at 293 K (ΔG°, ΔH°, and ΔS°) for U-238, Th-232, and K-40 are -14590.7 kJ/mol, -6.66 kJ/mol, and 26.47 J/(mol K), -96,96.5 kJ/mol, -2.48 kJ/mol, and 14.17 J/(mol K), and -3922.09 kJ/mol, -1.32 kJ/mol, and 6.12 J/(mol K), respectively.
Collapse
Affiliation(s)
- Saad S. M. Hassan
- Chemistry
Department, Faculty of Science, Ain Shams
University, 11566 Cairo, Egypt
| | - Ehab M. Abdel Rahman
- Central
Laboratory for Environmental Radioactivity Measurements Inter-Comparison
and Training (CLERMIT), Nuclear and Radiological
Regulatory Authority, 11762 Cairo, Egypt
| | - Gehan M. El-Subruiti
- Chemistry
Department, Faculty of Science, Alexandria
University, 45183 Alexandria, Egypt
| | - Ayman H. Kamel
- Chemistry
Department, Faculty of Science, Ain Shams
University, 11566 Cairo, Egypt
| | - Hanan M. Diab
- Central
Laboratory for Environmental Radioactivity Measurements Inter-Comparison
and Training (CLERMIT), Nuclear and Radiological
Regulatory Authority, 11762 Cairo, Egypt
| |
Collapse
|
41
|
Golia EE, Diakoloukas V. Soil parameters affecting the levels of potentially harmful metals in Thessaly area, Greece: a robust quadratic regression approach of soil pollution prediction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29544-29561. [PMID: 34109520 DOI: 10.1007/s11356-021-14673-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The behavior and possible contamination risk due to the presence of potentially harmful metals (PHM) were studied based on 2250 soil samples that were collected in a 5-year period (2013-2017) from the plain of Thessaly (prefectures of Karditsa, Trikala, and Larissa). The vertical distribution of metals was also investigated from sample profiles at three depths 0-30, 30-60, and 60-90cm. The soils of the sampling belong to four taxonomy soil orders that are dominant in the studied area (Alfisols, Inceptisols, Endisols, and Vertisols). In a novel approach, robust quadratic regression analysis on multiple variables was used to define prediction models of the concentrations of two metals: Fe which is an essential metal and the toxic Cd. Linear and quadratic regression formulae were estimated based on the iteratively reweighted least squares robust regression approach in an effort to eliminate the impact of the outliers. These formulae define how several soil properties affect the distribution of the considered metals in each soil order. The evaluation of the estimated regression equations based on the R2 metric indicates that they constitute a useful, reliable, and valuable tool for managing, describing, and predicting the pollution in the studied area.
Collapse
Affiliation(s)
- Evangelia E Golia
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 38 446 Magnesia, Volos, Greece.
| | - Vassilios Diakoloukas
- School of Electrical and Computer Engineering (ECE), Technical University of Crete, University Campus, Akrotiri, 73 100, Chania, Crete, Greece
| |
Collapse
|
42
|
Chen CK, Nguyen NT, Le TT, Duong CC, Nguyen CN, Truong DT, Liao CH. Novel design of amine and metal hydroxide functional group modified onto sludge biochar for arsenic removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1384-1399. [PMID: 35290219 DOI: 10.2166/wst.2022.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study involved novel-designed sludge biochar (SB) adsorbed for arsenic removal with lower operating costs and higher adsorption efficiency properties. Generally, biochar only relies on micropores for pollutant adsorption, but physical adsorption is not highly efficient for arsenic removal. Therefore, in order to improve the removal efficiency of arsenic by SB, diethylenetriamine (DETA) and FeCl3 were used in this study to modify the surface of SB by an immersion method. The objectives of this research are to obtain optimum operation conditions by assessing the effect of different Fe content, pH and initial concentration on adsorbing arsenic. This study is the first to use Density Functional Theory (DFT) to simulate and verify the adsorption mechanism of arsenic by SB. Results showed the presence of amine/iron oxyhydroxides functional groups greatly promoted SB surface activity and its arsenic adsorption potential. The surface area, pore volume and pore size of the SB were estimated to be 525 m2 g-1, 0.35 cm3 g-1 and 8.71 nm, respectively. The DFT model result is the same as the result of arsenic adsorption performance with high adsorption energy (-246.3 kJmol-1) and shorter bond distances (1.42 Å), indicating strong chemical adsorption between arsenic and material. The reaction mechanism is divided into four pathways, including oxidation-reduction, complexation, electrostatic adsorption and pore adsorption.
Collapse
Affiliation(s)
- Chih-Kuei Chen
- Department of Environmental Engineering, National I-Lan University, Ilan 26047, Taiwan, China; Continental Water Engineering Corporation, Taipei 10608, Taiwan, China
| | - Nhat-Thien Nguyen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, China
| | - Thuy-Trang Le
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 500000, Viet Nam
| | - Cong-Chinh Duong
- Southern Institute of Water Resources Research, Ho Chi Minh 700000, Viet Nam
| | - Cong-Nguyen Nguyen
- Faculty of Chemistry and Environment, Dalat University, Dalat 66100, Viet Nam
| | | | - Chun-Hsing Liao
- Infectious Disease Divisions, Far Eastern Memorial Hospital, New Tai-Pei 22060, Taiwan, China E-mail:
| |
Collapse
|
43
|
Placido DF, Lee CC. Potential of Industrial Hemp for Phytoremediation of Heavy Metals. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050595. [PMID: 35270065 PMCID: PMC8912475 DOI: 10.3390/plants11050595] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 05/27/2023]
Abstract
The accumulation of anthropogenic heavy metals in soil is a major form of pollution. Such potentially toxic elements are nonbiodegradable and persist for many years as threats to human and environmental health. Traditional forms of remediation are costly and potentially damaging to the land. An alternative strategy is phytoremediation, where plants are used to capture metals from the environment. Industrial hemp (Cannabis sativa) is a promising candidate for phytoremediation. Hemp has deep roots and is tolerant to the accumulation of different metals. In addition, the crop biomass has many potential commercial uses after harvesting is completed. Furthermore, the recent availability of an annotated genome sequence provides a powerful tool for the bioengineering of C. sativa for better phytoremediation.
Collapse
|
44
|
Wang J, Chen X, Chu S, You Y, Chi Y, Wang R, Yang X, Hayat K, Zhang D, Zhou P. Comparative cytology combined with transcriptomic and metabolomic analyses of Solanum nigrum L. in response to Cd toxicity. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127168. [PMID: 34534808 DOI: 10.1016/j.jhazmat.2021.127168] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 05/05/2023]
Abstract
Cadmium (Cd) triggers molecular alterations in plants, perturbs metabolites and damages plant growth. Therefore, understanding the molecular mechanism underlying the Cd tolerance in plants is necessary for assessing the persistent environmental impact of Cd. In this study, Solanum nigrum was selected as the test plant to investigate changes in biomass, Cd translocation, cell ultrastructure, metabolites and genes under hydroponic conditions. The results showed that the plant biomass was significantly decreased under Cd stress, and the plant has a stronger Cd transport capability. Transmission electron microscopy revealed that increased Cd concentration gradually damaged the plant organs (roots, stems and leaves) cell ultrastructure, as evidenced by swollen chloroplasts and deformed cell walls. Additionally, metabolomics analyses revealed that Cd stress mainly affected seven metabolism pathways, including 19 differentially expressed metabolites (DEMs). Moreover, 3908 common differentially expressed genes (DEGs, 1049 upregulated and 2859 downregulated) were identified via RNA-seq among five Cd treatments. Meanwhile, conjoint analysis found several DEGs and DEMs, including laccase, peroxidase, D-fructose, and cellobiose etc., are associated with cell wall biosynthesis, implying the cell wall biosynthesis pathway plays a critical role in Cd detoxification. Our comprehensive investigation using multiple approaches provides a molecular-scale perspective on plant response to Cd stress.
Collapse
Affiliation(s)
- Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yimin You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
45
|
Kaushik S, Sharma P, Kaur G, Singh AK, Al-Misned FA, Shafik HM, Sirhindi G. Seed priming with methyl jasmonate mitigates copper and cadmium toxicity by modifying biochemical attributes and antioxidants in Cajanus cajan. Saudi J Biol Sci 2022; 29:721-729. [PMID: 35197737 PMCID: PMC8847966 DOI: 10.1016/j.sjbs.2021.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Contamination of agricultural soils with heavy metals (HMs) has posed major threat to the environment as well as human health. The aim of this study was to appraise the efficiency of key-antioxidant enzymes in enhancing plants' tolerance to HMs (heavy metals) like copper (Cu) and Cadmium (Cd), under the action of methyl jasmonate (Me-JA) in Cajanus cajan L. Seeds of C. cajan treated with Me-JA (0, 1 nM) were discretely subjected to noxious concentrations of Cu and Cd (0, 1, 5 mM) and raised for 12 days under controlled conditions in plant growth chamber for biochemical analysis. In contrast to Cd, Cu triggered oxidative stress more significantly (44.54% in 5 mM Cu increase in MDA as compared to control) and prominently thereby affecting plants' physiological and biochemical attributes. By activating the antioxidant machinery, Me-JA pre-treatment reduced HMs-induced oxidative stress, increased proline production, glutathione (41.95% under 5 mM Cu when treated with 1 nM Me-JA treatment) and ascorbic acid content by 160.4 % under aforemtioned treatments thus improving the redox status. Thus, in light of this our results put forward a firm basis of the positive role that Me-JA might play in the mitigation of oxidative stress caused due to HMs stress by stimulating antioxidant defense system leading to overall improvement of growth of C. cajan seedlings.
Collapse
Affiliation(s)
- Shruti Kaushik
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Poonam Sharma
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Gurvarinder Kaur
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Fahad A Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hesham M Shafik
- Hungarian Academy of Sciences, Limnoecology Research Group, University of Pannonia, Gyetem u. 10, H-8200 Veszprem, Hungary
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| |
Collapse
|
46
|
Debela AS, Dawit M, Tekere M, Itanna F. Phytoremediation of soils contaminated by lead and cadmium in Ethiopia, using Endod ( Phytolacca dodecandra L). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1339-1349. [PMID: 35060415 DOI: 10.1080/15226514.2021.2025336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phytoremediation is a cost effective and environmentally sustainable green technology for remediation of metal contaminated sites. In Addis Ababa, the capital of Ethiopia, large vegetable farms are grown on contaminated sites. This study evaluates the potential of Phytolacca dodecandra L to remediate Pb and Cd from contaminated sites in Addis Ababa. Pb and Cd in soil samples and different plant parts were determined using AAS. Phytoremediation potential of P. dodecandra in different seasons was estimated by calculating the Bioconcentration factor (BCF) and translocation factor (TF). The average BCF recorded for plant shoot in dry season samples varied from 0.87 to 1.74 for Pb and 1.06 to 2.00 for Cd, while in wet season it was within the range of 1.1-1.53 for Pb and 0.93-3.89 for Cd. The TF values for P. dodecandra ranged from 0.84 to 3.49 for Pb and 1.81 to 4.11 for Cd in dry season, whereas for wet season it varied between 1.34 and 2.01 for Pb and 1.78 and 2.97 for Cd. Since the mean values of BCF and TF were >1, it was concluded that P. dodecandra has considerable potential for phytoextraction of Pb and Cd in contaminated sites.
Collapse
Affiliation(s)
- Alemu Shiferaw Debela
- Department of Environmental Management, Kotebe Metropolitan University, Addis Ababa, Ethiopia
| | - Mekibib Dawit
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Memory Tekere
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Fisseha Itanna
- Department of Soil Science and Resource Conservation, National University of Lesotho, Maseru, Lesotho
| |
Collapse
|
47
|
Effect of Marginal-Quality Irrigation on Accumulation of some Heavy Metals (Mn, Pb, and Zn) in TypicTorripsamment Soils and Food Crops. SUSTAINABILITY 2022. [DOI: 10.3390/su14031067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lack of active sorption sites in sandy soils renders metals added by irrigation water more labile and increases their soil-to-plant transfer. Thus, this study investigated the long-term impacts of irrigation using sewage effluents and contaminated groundwater on metal accumulations in TypicTorripsamment soils, and edible parts of food crops. Nine sites in El-Gabal El-Asfar farm, south-eastern to the Nile Delta of Egypt, were selected. At each site, irrigation water, soil (0–30 cm), and the crop’s edible part were sampled in triplicates and analyzed for Mn, Pb, and Zn. Results revealed significant (p < 0.05) differences in metal concentrations among water sources. Thus, constant irrigation caused significant spatial variations in total and available metal contents in soils. Total contents of Pb (in four sites) and Zn (in all sites) exceed the lithosphere range, while the available contents of the three metals exceeded the safe limits in all soils. The index of geo-accumulation indicated no Mn pollution but showed elevated pollution risks for Pb and Zn. The three metals showed high availability ratios, proving the effect of light soil texture. The multivariate statistical analysis indicated that Mn and Zn had similar geochemical behaviors in soils. Metal contents in all crop’s edible parts surpassed the safe limits. The bioaccumulation factor (BAF) was less than 1.0 for Mn and Zn but higher than 1.0 for Pb. The highest BAFs occurred in cabbage leaves, indicating the phytoextraction potential of this species. Sufficient water treatment and proper remediation techniques are recommended to alleviate metal accumulation in food crops and their transfer via the food chain.
Collapse
|
48
|
Petoussi MA, Kalogerakis N. Olive mill wastewater phytoremediation employing economically important woody plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114076. [PMID: 34781052 DOI: 10.1016/j.jenvman.2021.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
In this study two plant species, Punica granatum L. and Myrtus communis L., have been tested as candidates for phytoremediation of olive mill wastewater (OMW) through recirculation in soil pilot units, according to the proposed patented technology by Santori and Cicalini [EP1216963 A. 26 Jun 2002]. Wastewater was treated in batches of low to high organics strength (COD: 2 700-45 700 mg/L) during summer months of two consecutive years. Dynamics of the most important wastewater parameters were investigated, and corresponding removal rates were estimated. During treatment of low organic load OMW, average removal rate of organics, phenolics, total nitrogen and total phosphorus were 0.68 g-COD/kg-soil d, 0.073 g-TPh/kg-soil d, 0.033 g-TN/kg-soil d and 0.0074 g-TP/kg-soil d respectively and plants proved to be tolerant to the OMW. During treatment of high organic load OMW removal rates were roughly 10-fold higher although phytotoxic symptoms were observed. Plants were found to contribute greatly to the OMW treatment process since organics removal rates in pilot units were found to be at least 10-fold higher than in wastewater treatment in non-vegetated soil. Plant species with high added value products such as pomegranate and myrtle trees were used in this study, improving the circular economy potential of the aforementioned technology. Moreover, its efficiency has been demonstrated by quantification of the overall removal rates of key constituents as well as the contribution of the plants in the OMW treatment.
Collapse
Affiliation(s)
- Margarita A Petoussi
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| |
Collapse
|
49
|
Wang L, Xie X, Li Q, Yu Z, Hu G, Wang X, Liu J. Accumulation of potentially toxic trace elements (PTEs) by native plant species growing in a typical gold mining area located in the northeast of Qinghai-Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6990-7000. [PMID: 34467488 DOI: 10.1007/s11356-021-16076-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Though gold mines provide significant economic benefits to local governments, mining causes soil pollution by potentially toxic trace elements (PTEs) in mining areas, especially in the Qinghai-Tibet Plateau. Screening of native plant species from mining areas is now an effective, inexpensive, and eco-friendly method for the remediation of PTEs in situ. In the present study, we conducted experiments to assess the accumulation of As, Cd, Pb, and Zn in 12 native plant species growing on a typical gold mining area in the Qinghai-Tibet Plateau. Our results showed that rhizosphere soils have high soil organic matter content, high levels of As, and moderate levels of Cd. Geranium pylzowianum accumulated relatively higher As in its shoots and exhibited translocation factor (TF) higher than 1 for As (4.65), Cd (1.87), and Pb (1.36). Potentilla saundersiana had bioconcentration factor of shoot (BCF-S) higher than 1 for Cd (4.52) and Pb (1.70), whereas its TF was higher than 1 for As, Cd, Pb, and Zn. These plant species exhibit strong tolerance to these PTEs. Furthermore, Elymus nutans accumulated low levels of As, Cd, Pb, and Zn in their shoots and exhibited TF values lower than 1 for the four PTEs. Therefore, G. pylzowianum is a promising candidate for the in situ phytoextraction of As, and P. saundersiana can be used as an effective plant for Cd and Pb phytoextraction. E. nutans is better suited for the phytostabilisation of multiple PTEs. This work is of significant importance for screening native plant species that can provide a reference for phytoremediation of PTE-contaminated soils in this area or other place with similar climate, and has a good potential for developing PTE phytoremediation strategies at mining sites.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xiaorong Xie
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Qifeng Li
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou, 730030, Gansu, People's Republic of China
| | - Zhifeng Yu
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou, 730030, Gansu, People's Republic of China
| | - Guangde Hu
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - XiXi Wang
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
50
|
Zheng R, Teng W, Hu Y, Hou X, Shi D, Tian X, Scullion J, Wu J. Cadmium uptake by a hyperaccumulator and three Pennisetum grasses with associated rhizosphere effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1845-1857. [PMID: 34363165 DOI: 10.1007/s11356-021-15043-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Pennisetum grasses (P. purpureum Schumach. 'Purple', P. alopecuroides (L.) Spreng. 'Liren' and P. alopecuroides (L.) Spreng. 'Changsui'), and a cadmium (Cd) hyperaccumulator (Thlaspi caerulescens J.Presl & C.Presl), were grown in soil with four Cd addition levels of 0, 2, 20 and 200 mg/kg. Toxicity symptoms were not observed although growth of all plants decreased as Cd addition increased. Shoot bioconcentration factor (BCFS), the translocation factor (TF) and shoot accumulation of Cd for most plants first increased and then declined as Cd concentrations increased. In contrast, the root bioconcentration factor (BCFR) for T. caerulescens declined and root Cd accumulation for T. caerulescens and two P. alopecuroides cultivars increased consistently as Cd levels increased. P. purpureum had the largest biomass with shoot Cd accumulation similar to that of T. caerulescens, despite lower foliar Cd concentration. Although shoot Cd concentrations of two P. alopecuroides cultivars were lower than for P. purpureum, root Cd concentrations were greater. P. purpureum had Cd BCFS and TF (> 1) at 2- and 20-mg/kg Cd addition treatments, similar to T. caerulescens. P. alopecuroides cultivars had Cd BCFR (> 1) and TF (< 1) at all Cd levels. Roots did not affect rhizosphere pH. However, concentrations of acid extractable Cd in rhizosphere soil were lower than those of corresponding non-rhizosphere soil at all Cd levels for T. caerulescens and P. purpureum; T. caerulescens and P. purpureum did not affect less bioavailable Cd fractions. Concentrations of acid extractable Cd in the rhizosphere of the P. alopecuroides cultivars were not reduced at any Cd level. Differences in Cd accumulation among the three Pennisetum grasses were mainly attributable to root biomass and Cd TFs rather than rhizosphere Cd mobility.
Collapse
Affiliation(s)
- Ruilun Zheng
- Research & Development Centre for Grasses and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Wenjun Teng
- Research & Development Centre for Grasses and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Yanxia Hu
- Research & Development Centre for Grasses and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Xincun Hou
- Research & Development Centre for Grasses and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Dong Shi
- Research & Development Centre for Grasses and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Xiaoxia Tian
- Research & Development Centre for Grasses and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - John Scullion
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, UK
| | - Juying Wu
- Research & Development Centre for Grasses and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|