1
|
Khajvand M, Drogui P, Arab H, Tyagi RD, Brien E. Hybrid process combining ultrafiltration and electro-oxidation for COD and nonylphenol ethoxylate removal from industrial laundry wastewater. CHEMOSPHERE 2024; 363:142931. [PMID: 39053780 DOI: 10.1016/j.chemosphere.2024.142931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Laundry wastewater is a significant source of nonylphenol ethoxylate (NPEO) at wastewater treatment plants, where its breakdown forms persistent nonylphenol (NP). NP poses risks as an endocrine disruptor in wildlife and humans. This study investigates the degradation of NPEO and COD in industrial laundry wastewater (LWW) using a two-stage process combining ultrafiltration (UF) and electro-oxidation (EO). UF was used to remove suspended solids, while soluble COD (COD0 = 239 ± 6 mg.L-1) and NPEO (NPEO0 = 341 ± 8 μg.L-1) were oxidized by the EO process. Different operating parameters were studied such as current density, electrolysis time, type of cathode and supporting electrolyte concentration. Using an experimental design methodology, the optimal conditions for COD and NPEO3-17 degradation were recorded. This included achieving 97% degradation of NPEO3-17 and 61% degradation of COD, with a total operating cost of 3.65 USD·m-3. These optimal conditions were recorded at a current density of 15 mA cm-2 for a 120-min reaction period in the presence of 4 g·Na2SO4 L-1 using a graphite cathode. The EO process allowed for reaching the guidelines required for water reuse (NPEO <200 μg.L-1, COD <100 mg.L-1) in the initial laundry washing cycles. Furthermore, our results demonstrate that both NP and NPEO compounds, including higher and shorter ethoxylate chains (NPEO3-17), were effectively degraded during the EO process, with removal efficiencies between 94% and 98%. This confirms the EO process's capability to effectively degrade NP, the by-product of NPEO breakdown.
Collapse
Affiliation(s)
- Mahdieh Khajvand
- Institut National de La Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université Du Québec, 490 Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Patrick Drogui
- Institut National de La Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université Du Québec, 490 Rue de La Couronne, Québec, G1K 9A9, Canada.
| | - Hamed Arab
- Institut National de La Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université Du Québec, 490 Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Rajeshwar Dayal Tyagi
- Research Centre for Eco-Environmental Engineering, Dongguan University of Technology, China; BOSK Bioproducts, Québec, Québec, Canada
| | - Emmanuel Brien
- Groupe Veos Inc, 1552 Rue Nationale, Terrebonne, Québec, J6W 6M1, Canada
| |
Collapse
|
2
|
Kuspanov Z, Baglan B, Baimenov A, Issadykov A, Yeleuov M, Daulbayev C. Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163914. [PMID: 37149164 DOI: 10.1016/j.scitotenv.2023.163914] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
The growing environmental and energy crises have prompted researchers to seek new solutions, including large-scale photocatalytic environmental remediation and the production of solar hydrogen using photocatalytic materials. To achieve this goal, scientists have developed numerous photocatalysts with high efficiency and stability. However, the large-scale application of photocatalytic systems under real-world conditions is still limited. These limitations arise at every step, including the large-scale synthesis and deposition of photocatalyst particles on a solid support, and the development of an optimal design with high mass transfer and efficient photon absorption. The purpose of this article is to provide a detailed description of the primary challenges and potential solutions encountered in scaling up photocatalytic systems for use in large-scale water and air purification and solar hydrogen production. Additionally, based on a review of current pilot developments, we draw conclusions and make comparisons regarding the main operating parameters that affect performance, as well as propose strategies for future research.
Collapse
Affiliation(s)
- Zhengisbek Kuspanov
- Satbayev University, 050013 Almaty, Kazakhstan; Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation
| | - Bakbolat Baglan
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; Al Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Alzhan Baimenov
- Al Farabi Kazakh National University, 050040 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Aidos Issadykov
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Mukhtar Yeleuov
- Satbayev University, 050013 Almaty, Kazakhstan; Institute of Nuclear Physics, 050032 Almaty, Kazakhstan
| | - Chingis Daulbayev
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| |
Collapse
|
3
|
Efficient Removal Performance of COD in Real Laundry Wastewater via Conventional and Photo-Fenton Degradation Systems: A Comparative Study on Oxidants and Operating Time by H2O2/Fe2+. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Carlos B. Antarctic granite rocks as wastewater surfactant degradation catalysts. MARINE POLLUTION BULLETIN 2022; 185:114356. [PMID: 36427379 DOI: 10.1016/j.marpolbul.2022.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Antarctica seawater surrounding research stations has been impacted by antibiotics, formaldehydes, surfactants, heavy metals, sunscreen chemicals, and coliforms. The removal of surfactants from water is challenging since biological approaches are ineffective at mineralizing organic molecules. To evaluate the effectiveness of an advanced oxidation process (AOP) on the degradation of surfactants at the "Pedro Vicente Maldonado" research station of Ecuador, the performance of Antarctic granite rocks as catalysts and hydrogen peroxide (H2O2) as an oxidant was researched. Following the coagulation-flocculation process, the AOP reduced the concentration of surfactant by 90 %, from 19.50 mg/L to 0.97 mg/L. This short communication summarizes initial research on a low-cost wastewater treatment that could be used to degrade surfactants after coagulation-flocculation processes.
Collapse
Affiliation(s)
- Banchón Carlos
- Environmental Engineering, Escuela Superior Politécnica de Manabí, ESPAM-MFL, Calceta 130602, Ecuador.
| |
Collapse
|
5
|
Nunes RF, Teixeira ACSC. An overview on surfactants as pollutants of concern: Occurrence, impacts and persulfate-based remediation technologies. CHEMOSPHERE 2022; 300:134507. [PMID: 35395256 DOI: 10.1016/j.chemosphere.2022.134507] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Surfactants are molecules that reduce interfacial energy and increase solubility of other pollutants in water. These properties make them suitable for various domestic and industrial applications, soil remediation, pesticide formulation, among others. The increase in their use and the lack of strict regulations regarding their disposal and management is a matter of concern and requires more attention since the release and distribution of these compounds into the environment can modify important water quality parameters. As a result of these changes, different toxicological effects to aquatic organisms are discussed and exposed herein. On this basis, we provide an overview of the classes of surfactants, as well as their occurrence in different aqueous matrices. In addition, existing regulations around the world regarding their concentration limit for different environments are discussed. Current research focuses on the application of conventional treatments, such as biological treatments; notwithstanding, more toxic and bioaccumulative products can be generated. Advanced Oxidation Processes are promising alternatives and have also been widely applied for the removal of surfactants. This study provides, for the first time, an overview of the application of persulfate-based processes for surfactants degradation based on recent literature findings, as well as the various factors related to the activation of the persulfate anions. This review also highlights the challenges and opportunities for future research to overcome the obstacles to the practical application of this process.
Collapse
Affiliation(s)
- Roberta Frinhani Nunes
- Research Group in Advanced Oxidation Processes, Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, 380, São Paulo, Brazil.
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes, Department of Chemical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, 380, São Paulo, Brazil.
| |
Collapse
|
6
|
Badmus SO, Amusa HK, Oyehan TA, Saleh TA. Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62085-62104. [PMID: 34590224 PMCID: PMC8480275 DOI: 10.1007/s11356-021-16483-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/07/2021] [Indexed: 05/08/2023]
Abstract
This work comprehensively reviewed the toxicity and risks of various surfactants and their degraded products in the environmental matrices, various analytical procedures, and remediation methods for these surfactants. The findings revealed that the elevated concentration of surfactants and their degraded products disrupt microbial dynamics and their important biogeochemical processes, hinder plant-surviving processes and their ecological niche, and retard the human organic and systemic functionalities. The enormous adverse effects of surfactants on health and the environment necessitate the need to develop, select, and advance the various analytical and assessment techniques to achieve effective identification and quantification of several surfactants in different environmental matrices. Considering the presence of surfactants in trace concentration and environmental matrices, excellent analysis can only be achieved with appropriate extraction, purification, and preconcentration. Despite these pre-treatment procedures, the chromatographic technique is the preferred analytical technique considering its advancement and shortcomings of other techniques. In the literature, the choice or selection of remediation techniques for surfactants depends largely on eco-friendliness, cost-implications, energy requirements, regeneration potential, and generated sludge composition and volume. Hence, the applications of foam fractionation, electrochemical advanced oxidation processes, thermophilic aerobic membranes reactors, and advanced adsorbents are impressive in the clean-up of the surfactants in the environment. This article presents a compendium of knowledge on environmental toxicity and risks, analytical techniques, and remediation methods of surfactants as a guide for policymakers and researchers.
Collapse
Affiliation(s)
- Suaibu O Badmus
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| | - Hussein K Amusa
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Tajudeen A Oyehan
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|