1
|
Boorboori MR, Zhang H. The effect of cadmium on soil and plants, and the influence of Serendipita indica (Piriformospora indica) in mitigating cadmium stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:426. [PMID: 39316191 DOI: 10.1007/s10653-024-02231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Due to environmental pollution, the risk of cadmium stress for crops is soaring, so researchers are exploring inexpensive solutions to enhance cultivated crops in contaminated soil. Using microorganisms to reduce cadmium risk has been one of the most effective strategies in recent decades. Serendipita indica (Piriformospora indica) is one of the best endophyte fungi that, in addition to reducing heavy metal stress for crops, can significantly reduce the threat of other abiotic stresses. As part of this research, cadmium in soil has been investigated, as well as its effects on plants' morphophysiological and biochemical characteristics. The present review has also attempted to identify the role of Serendipita indica in improving the growth and performance of crops, as well as its possible effect on reducing the risk of cadmium. The results showed that Serendipita indica enhance the growth and productivity of plants in contaminated environments by improving soil quality, reducing cadmium absorption, improving the activity of antioxidant enzymes and secondary metabolites, raising water and mineral absorption, and altering morphophysiological structures.
Collapse
Affiliation(s)
- Mohammad Reza Boorboori
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou, 234000, China.
| | - Haiyang Zhang
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou, 234000, China.
| |
Collapse
|
2
|
Pouyamanesh S, Kowsari E, Ramakrishna S, Chinnappan A. A review of various strategies in e-waste management in line with circular economics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93462-93490. [PMID: 37572248 DOI: 10.1007/s11356-023-29224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Waste management of electrical and electronic equipment has become a key challenge for electronics manufacturers due to globalization and the rapid expansion of information technology. As the volume of e-waste grows, legal departments lack the infrastructure, technology, and ability to collect and manage it environmentally soundly. Government laws, economic reasons, and social issues are important considerations in e-waste management. The circular economy concept is built on reusing and recycling goods and resources. A novel idea called the circular economy might prevent the negative consequences brought on by the exploitation and processing of natural resources while also having good effects such as lowering the demand for raw materials, cutting down on the use of fundamental resources, and creating jobs. To demonstrate the significance of policy implementation, the necessity for technology, and the need for societal awareness to build a sustainable and circular economy, the study intends to showcase international best practices in e-waste management. This study uses circular economy participatory implementation methods to provide a variety of possible approaches to assist decision-makers in e-waste management. The purpose of this article is to review the most accepted methods for e-waste management to emphasize the importance of implementing policies, technology requirements, and social awareness in creating a circular economy. To conclude, this paper highlights the necessity of a common legal framework, reform of the informal sector, the responsibility of different stakeholders, and entrepreneurial perspectives.
Collapse
Affiliation(s)
- Soudabeh Pouyamanesh
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 1591634311, Iran
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran, 1591634311, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Amutha Chinnappan
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
3
|
Zhang J, Fan X, Wang X, Tang Y, Zhang H, Yuan Z, Zhou J, Han Y, Li T. Bioremediation of a saline-alkali soil polluted with Zn using ryegrass associated with Fusariumincarnatum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119929. [PMID: 35977634 DOI: 10.1016/j.envpol.2022.119929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Biotechnological strategies have become effective in the remediation of polluted soils as they are cost-effective and do not present a risk of secondary pollution. However, using a single bioremediation technique (microorganism or plant) is not suitable for achieving a high remediation rate of polluted saline-alkali soils with heavy metals. Therefore, the present study aims to assess the effects and mechanisms of combined ryegrass and Fusarium incarnatum on the zinc (Zn)-polluted saline-alkali soil over 45 days. According to the obtained results, the combined Fusarium incarnatum-ryegrass showed the highest remediation rate of 49.35% after 45 days, resulting in a significantly lower soil Zn concentration than that observed in the control group. In addition, the inoculation of Fusarium incarnatum showed a positive effect on the soil EPS secretion. The soil protein contents ranged from 0.035 to 0.055 mg/kg, while the soil polysaccharide contents increased from 0.25 to 0.61 mg/g. The soil microbial flora and ryegrass showed resistance to saline and alkaline stresses through the secretion of extracellular polysaccharides. The three-dimensional fluorescence spectrum (3D-EEM) confirmed that EPS in the soil was mainly a fulvic acid-like substance. The fluorescein diacetate (FDA) hydrolase activity in the saline-alkali soil was first increased due to the effect of Fusarium incarnatum and then decreased to a minimum value of 96 μg/(g·h). In addition, the Fusarium incarnatum inoculation improved the diversity and richness of soil fungi. Although the Fusarium incarnatum inoculation had a slight effect on the germination of ryegrass, it increased the biomass and enrichment coefficient. The results revealed a translocation factor (TF) value of 0.316 at 45 days after ryegrass sowing, showing significant enrichment of the soil Zn heavy metal zinc in the ryegrass roots.
Collapse
Affiliation(s)
- Jinxuan Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Xiaodan Fan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China; Municipal Experimental Teaching Demonstration Center of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China; Tianjin International Joint Research and Development Center, Tianjin, China.
| | - Xueqi Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Yinbing Tang
- Tianjin Enshui Environmental Protection Technology Co.Ltd., Tianjin, 300381, China
| | - Hao Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Zhengtong Yuan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Jiaying Zhou
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Yibo Han
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Teng Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| |
Collapse
|
4
|
Meng J, Xu B, Liu F, Li W, Sy N, Zhou X, Yan B. Effects of chemical and natural ageing on the release of potentially toxic metal additives in commercial PVC microplastics. CHEMOSPHERE 2021; 283:131274. [PMID: 34182647 DOI: 10.1016/j.chemosphere.2021.131274] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 05/21/2023]
Abstract
Various chemical substances, such as potentially toxic trace metals, are used as plastic additives to improve the performance of polymers and extend the service life of plastic products. However, these added trace metals are likely released from plastic into the environment when the plastic becomes a pollutant, although the process is poorly understood. In this study, chemical ageing of commercial polyvinyl chloride (PVC) microplastics using hydrogen peroxide (H2O2) and natural ageing of PVC that had been added to an alkaline paddy soil were undertaken to evaluate the potential release of trace metals from PVC. Enhanced release of trace metals from PVC with the increasing H2O2 concentrations was observed, in which the released Pb was 1-2 orders of magnitude higher than other metals (p < 0.01). The released Cr, Ni, Pb, Cu, Zn, Cd and Mn accounted for 87.37%, 79.27%, 22.02%, 20.93%, 17.06%, 15.11%, and 11.02% of their total concentrations (0.28 ± 0.03, 0.08 ± 0.01, 13.67 ± 0.18, 1.07 ± 0.02, 2.20 ± 0.18, 0.05 ± 0.00 and 1.26 ± 0.08 mmol kg-1) in PVC after ageing with 30% H2O2, respectively. Compared with the control treatment without PVC addition, the concentrations of CaCl2-extractable Cu, Mn, Ni, Pb, and Zn in the soil treated with 5% PVC are significantly increased after incubation for 60 days (p < 0.01). In conclusion, chemical and natural ageing have the potential to lead to the release of Cu, Mn, Ni, Pb, and Zn from the commercial PVC into aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Jun Meng
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Baile Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fei Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Wenjin Li
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Nathan Sy
- Department of Environmental Sciences, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
5
|
Liu L, Li J, Wu G, Shen H, Fu G, Wang Y. Combined effects of biochar and chicken manure on maize ( Zea mays L.) growth, lead uptake and soil enzyme activities under lead stress. PeerJ 2021; 9:e11754. [PMID: 34306829 PMCID: PMC8280880 DOI: 10.7717/peerj.11754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022] Open
Abstract
The goal of the present work was to evaluate the additive effects of biochar and chicken manure on maize growth in Pb-contaminated soils. In this study, we conducted a pot experiment to investigate how biochar in soil (20, 40 g·kg-1), chicken manure in soil (20, 40 g·kg-1), or a combination of biochar and chicken manure in soil (each at 20 g·kg-1) effect maize growth, Pb uptake, leaves' antioxidant enzymatic activities, and soil enzyme activities under artificial conditions to simulate moderate soil pollution (800 Pb mg·kg-1). The results showed that all biochar and/or chicken manure treatments significantly (P < 0.05) increased maize plant height, biomass, and superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity but decreased the malondialdehyde (MDA) content. These results indicated that amending the soil with biochar and/or chicken manure could alleviate Pb's phytotoxicity. The biochar and/or chicken manure treatments remarkably decreased the Pb concentration in maize roots, stems, leaves, bioconcentration factor (BCF), translocation factor (TF), and available Pb concentration in the soil. Amending the soil with chicken manure alone was more effective at increasing maize growth and antioxidant enzymatic activity; the biochar treatment alone was more effective at inducing soil alkalinization and contributing to Pb immobilization. The combined use of biochar and chicken manure had an additive effect and produced the largest increases in maize growth, leaves' antioxidant enzymatic activity, and soil enzyme activity. Their combined use also led to the most significant decreases in maize tissues Pb and soil available Pb. These results suggest that a combination of biochar and chicken manure was more effective at reducing soil Pb bioavailability and uptake by maize tissues, and increasing maize growth. This combination increased plant height by 43.23% and dry weight by 69.63% compared to the control.
Collapse
Affiliation(s)
- Ling Liu
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiwei Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Guanghai Wu
- China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China
| | - Hongtao Shen
- China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China
| | - Guozhan Fu
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yanfang Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China.,State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|