1
|
Liu-Xu L, Ma L, Farvardin A, García-Agustín P, Llorens E. Exploring the impact of plant genotype and fungicide treatment on endophytic communities in tomato stems. Front Microbiol 2024; 15:1453699. [PMID: 39397796 PMCID: PMC11469548 DOI: 10.3389/fmicb.2024.1453699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
This study examines how plant genotype can influence the microbiome by comparing six tomato genotypes (Solanum lycopersicum) based on their traditional vs. commercial backgrounds. Using Illumina-based sequencing of the V6-V8 regions of 16S and ITS2 rRNA genes, we analyzed and compared the endophytic bacterial and fungal communities in stems to understand how microbiota can differ and be altered in plant genotypes and the relation to human manipulation. Our results reflect that traditional genotypes harbor significantly more exclusive microbial taxa and a broader phylogenetic background than the commercial ones. Traditional genotypes were significantly richer in Eurotiomycetes and Sordariomycetes fungi, while Lasiosphaeriaceae was more prevalent in commercial genotypes. TH-30 exhibited the highest bacterial abundance, significantly more than commercial genotypes, particularly in Actinomycetia, Bacteroidia, and Gammaproteobacteria. Additionally, traditional genotypes had higher bacterial diversity, notably in orders like Cytophagales, Xanthomonadales, and Burkholderiales. Moreover, we performed an evaluation of the impact of a systemic fungicide (tebuconazole-dichlofluanide) to simulate a common agronomic practice and determined that a single fungicide treatment altered the stem endophytic microbiota. Control plants had a higher prevalence of fungal orders Pleosporales, Helotiales, and Glomerellales, while treated plants were dominated by Sordariomycetes and Laboulbeniomycetes. Fungal community diversity significantly decreased, but no significant impact was observed on bacterial diversity. Our study provides evidence that the background of the tomato variety impacts the fungal and bacterial stem endophytes. Furthermore, these findings suggest the potential benefits of using of traditional genotypes as a source of novel beneficial microbiota that may prove highly valuable in unpredicted challenges and the advancement in sustainable agriculture.
Collapse
Affiliation(s)
- Luisa Liu-Xu
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castellón de la Plana, Spain
| | - Liang Ma
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Atefeh Farvardin
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castellón de la Plana, Spain
| | - Pilar García-Agustín
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castellón de la Plana, Spain
| | - Eugenio Llorens
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castellón de la Plana, Spain
| |
Collapse
|
2
|
Jia X, Li M, Zhang Q, Jia M, Hong L, Zhang S, Wang Y, Luo Y, Wang T, Ye J, Wang H. Analysis of rhizosphere soil microbial diversity and its functions between Dahongpao mother tree and cutting Dahongpao. FRONTIERS IN PLANT SCIENCE 2024; 15:1444436. [PMID: 39309180 PMCID: PMC11412831 DOI: 10.3389/fpls.2024.1444436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024]
Abstract
Dahongpao mother tree (Camellia sinensis (L.) O. Ktze) is a representative of Wuyi rock tea. Whether there is a difference in rhizosphere soil microbial diversity and function between asexually propagated cuttings of Dahongpao (PD) and the parent Dahongpao mother tree (MD) has not been reported. In this study, high throughput sequencing technology was used to analyze rhizosphere soil microbial diversity, functions and their relationship with soil available nutrients and enzyme activities in MD and PD. The results showed that available nitrogen, phosphorus and potassium contents and urease, protease, acid phosphatase and sucrase activities of rhizosphere soils in MD were significantly higher than those in PD. Both bacterial and fungal diversity were higher in rhizosphere soils in MD than in PD, and secondly, the bacterial community structure was less stable while the fungal community structure was more stable in PD compared to MD. There were significant differences between MD and PD tea tree rhizosphere soils in 6 genera of characteristic bacteria and 4 genera of characteristic fungi. The results of function and interaction effect analysis showed that the rhizosphere soil available nutrient content and enzyme activities in MD were significantly higher than those in PD, and their contributions mainly originated from Pirellula and Acidisphaera of characteristic bacteria and Alatospora of characteristic fungi. Secondly, MD maybe had a stronger ability to inhibit soil pathogens than PD, with the main contribution coming from Scopulariopsis and Tolypocladium of characteristic fungi. Overall, compared with PD, soil texture in MD was relatively better, and its soil nutrient cycling-related enzyme activities were stronger, which was more favorable to soil nutrient cycling and increased the available nutrient content of the soil, which in turn promoted the growth of tea trees. This study provides an important reference for the planting and management of tea tree cuttings and microbial regulation of tea tree growth.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Miao Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Zhang
- College of Life Science, Longyan University, Longyan, China
| | - Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yangxin Luo
- College of Life Science, Longyan University, Longyan, China
| | - Tingting Wang
- College of Life Science, Longyan University, Longyan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Life Science, Longyan University, Longyan, China
| |
Collapse
|
3
|
Wu G, Shi W, Zheng L, Wang X, Tan Z, Xie E, Zhang D. Impacts of organophosphate pesticide types and concentrations on aquatic bacterial communities and carbon cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134824. [PMID: 38876013 DOI: 10.1016/j.jhazmat.2024.134824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Organophosphorus pesticides (OPPs) are important chemical stressors in aquatic ecosystems, and they attract increasing more attentions recently. However, the impacts of different OPPs on carbon cycling remain unclear, particularly for those functional-yet-uncultivable microbes. This study investigated the change in lake aquatic microbial communities in the presence of dichlorvos, monocrotophos, omethoate and parathion. All OPPs significantly inhibited biomass (p < 0.05) and the expression of carbon cycle-related cbbLG gene (p < 0.01), and altered aquatic microbial community structure, interaction, and assembly. Variance partitioning analysis showed a stronger impact of pesticide type on microbial biomass and community structure, where pesticide concentration played more significant roles in carbon cycling. From analysis of cbbLG gene and PICRUSt2, Luteolibacter and Verrucomicrobiaceae assimilated inorganic carbon through Wood-Ljungdahl pathway, whereas it was Calvin-Benson-Bassham cycle for Cyanobium PCC-6307. This work provides a deeper insight into the behavior and mechanisms of microbial community change in aquatic system in response to OPPs, and explicitly unravels the impacts of OPPs on their carbon-cycling functions.
Collapse
Affiliation(s)
- Guanxiong Wu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wei Shi
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhanming Tan
- College of Horticulture and Forestry, Tarim University, Alar, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
4
|
Lu T, Lei C, Gao M, Lv L, Zhang C, Qian H, Tang T. A risk entropy approach for linking pesticides and soil bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133970. [PMID: 38457974 DOI: 10.1016/j.jhazmat.2024.133970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Pesticides play a vital role in ensuring modern agricultural production, but also adversely affecting soil health. Microorganisms are the cornerstone of soil ecology, however, to date, there are few unified standards to measure the risk of soil pesticide residues to soil microbial community. To compensate for this gap, we collected soil samples from 55 orchards and monitored and risk-assessed 165 pesticides to microbial community in the soil. Results showed that a total of 137 pesticides were detected in all samples. Pesticide residues significantly influenced the microbial diversity and community structure in orchard soils, particularly fungicides and herbicides. The risk entropy of each pesticide was calculated in all samples and it was found that 60% of the samples had a "pesticide risk" (Risk quotient > 0.01), where the relative abundance significantly increased in 43 genera and significantly decreased in 111 genera (p < 0.05). Through multiple screens, we finally identified Bacillus and Sphingomonas as the most abundant sensitive genera under pesticide perturbation. The results showed that despite the complexity of the effects of pesticide residues on soils health, we could reveal them by identifying changes in soil bacterial, especially by the differences of microbial biomarkers abundance. The present study could provide new insights into the research strategy for pesticide pollution on soil microbial communities. ENVIRONMENTAL IMPLICATION: The risk of pesticide residues in soil needs to be quantified and standardized. We believe that microorganisms can be used as a marker to indicate soil pesticide residue risk. For this end, we investigated the residues of 165 pesticides in 55 orchard soil samples, calculated pesticide risk entropy and their effects on the soil microbial community. Through multiple analyzing and screening, we ultimately identified that, out of the 154 detected biomarkers, Bacillus and Sphingomonas were the most abundant sensitive genera under pesticide perturbation, which have the potential to be used as key biomarkers of soil microbiomes induced by pesticide perturbation.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chaotang Lei
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mingyu Gao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
5
|
Jeyaseelan A, Murugesan K, Thayanithi S, Palanisamy SB. A review of the impact of herbicides and insecticides on the microbial communities. ENVIRONMENTAL RESEARCH 2024; 245:118020. [PMID: 38151149 DOI: 10.1016/j.envres.2023.118020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/23/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Enhancing crop yield to accommodate the ever-increasing world population has become critical, and diminishing arable land has pressured current agricultural practices. Intensive farming methods have been using more pesticides and insecticides (biocides), culminating in soil deposition, negatively impacting the microbiome. Hence, a deeper understanding of the interaction and impact of pesticides and insecticides on microbial communities is required for the scientific community. This review highlights the recent findings concerning the possible impacts of biocides on various soil microorganisms and their diversity. This review's bibliometric analysis emphasised the recent developments' statistics based on the Scopus document search. Pesticides and insecticides are reported to degrade microbes' structure, cellular processes, and distinct biochemical reactions at cellular and biochemical levels. Several biocides disrupt the relationship between plants and their microbial symbionts, hindering beneficial biological activities that are widely discussed. Most microbial target sites of or receptors are biomolecules, and biocides bind with the receptor through a ligand-based mechanism. The biomarker action mechanism in response to biocides relies on activating the receptor site by specific biochemical interactions. The production of electrophilic or nucleophilic species, free radicals, and redox-reactive agents are the significant factors of biocide's metabolic reaction. Most studies considered for the review reported the negative impact of biocides on the soil microbial community; hence, technological development is required regarding eco-friendly pesticide and insecticide, which has less or no impact on the soil microbial community.
Collapse
Affiliation(s)
- Aravind Jeyaseelan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Kamaraj Murugesan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology-Ramapuram, Chennai, 600089, Tamil Nadu, India; Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia.
| | - Saranya Thayanithi
- Department of Biotechnology, Rathinam Technical Campus, Coimbatore, 641021, Tamil Nadu, India
| | - Suresh Babu Palanisamy
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| |
Collapse
|
6
|
He J, Li J, Gao Y, He X, Hao G. Nano-based smart formulations: A potential solution to the hazardous effects of pesticide on the environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131599. [PMID: 37210783 DOI: 10.1016/j.jhazmat.2023.131599] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023]
Abstract
Inefficient usage, overdose, and post-application losses of conventional pesticides have resulted in severe ecological and environmental issues, such as pesticide resistance, environmental contamination, and soil degradation. Advances in nano-based smart formulations are promising novel methods to decrease the hazardous impacts of pesticide on the environment. In light of the lack of a systematic and critical summary of these aspects, this work has been structured to critically assess the roles and specific mechanisms of smart nanoformulations (NFs) in mitigating the adverse impacts of pesticide on the environment, along with an evaluation of their final environmental fate, safety, and application prospects. Our study provides a novel perspective for a better understanding of the potential functions of smart NFs in reducing environmental pollution. Additionally, this study offers meaningful information for the safe and effective use of these nanoproducts in field applications in the near future.
Collapse
Affiliation(s)
- Jie He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Jianhong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Xiongkui He
- College of Science, China Agricultural University, Beijing 100193, PR China; College of Agricultural Unmanned System, China Agricultural University, Beijing 100193, PR China.
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
7
|
Cao J, Zhang Y, Dai G, Cui K, Wu X, Qin F, Xu J, Dong F, Pan X, Zheng Y. The long-acting herbicide mesosulfuron-methyl inhibits soil microbial community assembly mediating nitrogen cycling. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130293. [PMID: 36444049 DOI: 10.1016/j.jhazmat.2022.130293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Mesosulfuron-methyl is a widely used herbicide in wheat fields. We previously reported that mesosulfuron-methyl alters the bacterial/fungal community structure in experimental indoor microcosms, ultimately affecting NO3--N and NH4+-N contents in soil nitrogen (N) cycling. However, how mesosulfuron-methyl application alter soil N cycling by changing microbial community assembly is unknown. Here, we designed an outdoor experiment comprising 2-month periods to investigate changes in soil N-cycle functional genes and structural shifts in the microbial community assembly in response to mesosulfuron-methyl applied at 11.25 and 112.5 g a.i. hm-2. Results showed that high mesosulfuron-methyl input significantly decreased AOA amoA and nirK abundances within the initial 15 days, but increased AOB amoA on day 60. The nifH abundance displayed a stimulation-inhibition trend. Moreover, high mesosulfuron-methyl input decreased the network's complexity, and newly formed multiple network modules exhibited strong negative associations with nifH, AOB amoA, nirK and nirS. Further structural equation model demonstrated that mesosulfuron-methyl did reveal strong direct inhibition of nirK, and it indirectly affected nirK by changing nifH abundance and Planomicrobium. Thus mesosulfuron-methyl perturbs N-cycling processes by reshaping bacterial community assembly. Taken together, our study provides theoretical support for determining the microbiological mechanism by which mesosulfuron-methyl affects soil N cycling.
Collapse
Affiliation(s)
- Junli Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, People's Republic of China
| | - Ying Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China; Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, People's Republic of China
| | - Gaochen Dai
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China; Key Laboratory of Mountain Environment, Guizhou normal University, Guiyang 550025, People's Republic of China
| | - Kai Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China.
| | - Fanxin Qin
- Key Laboratory of Mountain Environment, Guizhou normal University, Guiyang 550025, People's Republic of China
| | - Jun Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Xinglu Pan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| |
Collapse
|
8
|
Berestetskiy A. Modern Approaches for the Development of New Herbicides Based on Natural Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:234. [PMID: 36678947 PMCID: PMC9864389 DOI: 10.3390/plants12020234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 05/12/2023]
Abstract
Weeds are a permanent component of anthropogenic ecosystems. They require strict control to avoid the accumulation of their long-lasting seeds in the soil. With high crop infestation, many elements of crop production technologies (fertilization, productive varieties, growth stimulators, etc.) turn out to be practically meaningless due to high yield losses. Intensive use of chemical herbicides (CHs) has led to undesirable consequences: contamination of soil and wastewater, accumulation of their residues in the crop, and the emergence of CH-resistant populations of weeds. In this regard, the development of environmentally friendly CHs with new mechanisms of action is relevant. The natural phytotoxins of plant or microbial origin may be explored directly in herbicidal formulations (biorational CHs) or indirectly as scaffolds for nature-derived CHs. This review considers (1) the main current trends in the development of CHs that may be important for the enhancement of biorational herbicides; (2) the advances in the development and practical application of natural compounds for weed control; (3) the use of phytotoxins as prototypes of synthetic herbicides. Some modern approaches, such as computational methods of virtual screening and design of herbicidal molecules, development of modern formulations, and determination of molecular targets, are stressed as crucial to make the exploration of natural compounds more effective.
Collapse
Affiliation(s)
- Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| |
Collapse
|
9
|
Kiselev EG, Prudnikova SV, Streltsova NV, Volova TG. Effectiveness of slow-release fungicide formulations for suppressing potato pathogens. PEST MANAGEMENT SCIENCE 2022; 78:5444-5455. [PMID: 36057853 DOI: 10.1002/ps.7167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND For the first time, the biological activity of slow-release fungicide formulations for suppressing potato pathogens deposited in a degradable poly-3-hydroxybutyrate/sawdust base has been obtained and investigated. RESULTS The slow-release fungicide formulations (azoxystrobin, azoxystrobin + mefenoxam, and difenoconazole) were studied in vitro and in vivo in comparison with commercial analogues. In in vitro cultures of phytopathogens, the deposited fungicides showed an inhibitory effect comparable to commercial analogues, limiting the growth of colonies of Phytophthora infestans, Alternaria longipes, Rhizoctonia solani and Fusarium solan (2.0-2.3 times relative to the negative control). In laboratory experiments, the use of deposited fungicides was accompanied by earlier germination and more active growth of potatoes against the background of a decrease in the area of plant damage and an increase in yield. In the field experiment, the deposited fungicides suppressed the development of Phytophthora and Alternariosis in the rhizosphere during the entire growing season and reduced the area of plant damage by pathogens by 10-15%, which is two times less than in the groups of plants treated with commercial preparations. The higher biological activity of the embedded fungicides ensured the maximum number of tubers undamaged by pathogens and the total yield of 22-23 t ha-1 , which exceeded the yields in the groups with commercial fungicides (18.4-20.8 t ha-1 ). CONCLUSION The slow-release fungicide formulations deposited in a degradable P(3HB)/sawdust base are effective in protecting potatoes from pathogens and increasing yields and have an advantage over commercial counterparts. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Evgeniy G Kiselev
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Biophysics SB RAS, Krasnoyarsk, Russia
| | - Svetlana V Prudnikova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | | | - Tatiana G Volova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Biophysics SB RAS, Krasnoyarsk, Russia
| |
Collapse
|
10
|
Akter R, Mukhles MB, Rahman MM, Rana MR, Huda N, Ferdous J, Rahman F, Rafi MH, Biswas SK. Effect of pesticides on nitrification activity and its interaction with chemical fertilizer and manure in long-term paddy soils. CHEMOSPHERE 2022; 304:135379. [PMID: 35716712 DOI: 10.1016/j.chemosphere.2022.135379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Effect of pesticides on nitrification activity and its interaction among heavy metal concentrations (HMCs), antibiotic resistance genes (ARGs), and ammonia monooxygenase (amoA) genes of long-term paddy soils is little known. The aim was to study the effect of pesticides on net nitrification rate (NR), potential nitrification rate (NP), HMCs, ARGs (sulI, sulII, tetO, and tetQ), and amoA (amoA-AOA, amoA-AOB, and amoA-NOB) genes in long-term treated paddy soils. NR and NP were significantly decreased (p < 0.05), whereas HMCs (Pb2+, Cu2+, Zn2+, and Fe3+) were a significantly increased (p < 0.05) in chemical fertilizer with pesticide treated paddy soils as compared with chemical fertilizer treated paddy soils. The scatter plot matrix indicated that total carbon (TC), soil organic carbon (SOC), total nitrogen (TN), and Fe were linearly correlated with NR and NP in long-term treated paddy soils. ARGs and amoA genes were significantly decreased (p < 0.05) in chemical fertilizer and manure with pesticide treated paddy soils. Overall, the result indicated the response of pesticide and their combination of manure with pesticide interaction present in long-term paddy soils, which will play a great role in the control uses of pesticides, manure, and chemical fertilizers in paddy soils and protect the nitrogen cycle as well as environment.
Collapse
Affiliation(s)
- Rehena Akter
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Muntaha Binte Mukhles
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Rasel Rana
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Nazmul Huda
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Fahida Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Meherab Hossain Rafi
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Sudhangshu Kumar Biswas
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
11
|
Volova TG, Kiselev EG, Baranovskiy SV, Zhila NO, Prudnikova SV, Shishatskaya EI, Kuzmin AP, Nemtsev IV, Vasiliev AD, Thomas S. Degradable Poly(3-hydroxybutyrate)-The Basis of Slow-Release Fungicide Formulations for Suppressing Potato Pathogens. Polymers (Basel) 2022; 14:3669. [PMID: 36080743 PMCID: PMC9460056 DOI: 10.3390/polym14173669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Three-component slow-release fungicide formulations with different modes of action of the active ingredients for suppressing potato pathogens were constructed for the first time. The difenoconazole, mefenoxam, prothioconazole, and azoxystrobin fungicides were embedded in the degradable polymer P(3HB)/birch wood flour blend and examined using SEM, IR spectroscopy, X-ray analysis, DTA, and DSC. Results showed that no chemical bonds were established between the components and that they were physical mixtures that had a lower degree of crystallinity compared to the initial P(3HB), which suggested different crystallization kinetics in the mixtures. The degradation behavior of the experimental formulations was investigated in laboratory micro-ecosystems with pre-characterized field soil. The slow-release fungicide formulations were prolonged-action forms with a half-life of at least 50-60 d, enabling gradual and sustained delivery of the active ingredients to plants. All slow-release fungicide formulations had a strong inhibitory effect on the most common and harmful potato pathogens (Phytophthorainfestans, Alternarialongipes, Rhizoctoniasolani, and Fusariumsolani).
Collapse
Affiliation(s)
- Tatiana G. Volova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Evgeniy G. Kiselev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Sergey V. Baranovskiy
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Natalia O. Zhila
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Svetlana V. Prudnikova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Andrey P. Kuzmin
- Basic Department of Chemistry and Technology of Natural Energy Sources and Carbon Materials, School of Petroleum and Gas Engineering, Siberian Federal University, 82 Svobodny Pr., 660041 Krasnoyarsk, Russia
| | - Ivan V. Nemtsev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
- Federal Research Center, “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Aleksander D. Vasiliev
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Solid State Physics and Nanotechnology, School of Engineering Physics and Radio Electronics, Siberian Federal University, 26 Kirensky St., 660074 Krasnoyarsk, Russia
| | - Sabu Thomas
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- International and Interuniversity Centre for Nano Science and Nano Technology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|