Chang H, Zhao Y, Li X, Damgaard A, Christensen TH. Review of inventory data for the biological treatment of sewage sludge.
WASTE MANAGEMENT (NEW YORK, N.Y.) 2023;
156:66-74. [PMID:
36442328 DOI:
10.1016/j.wasman.2022.11.027]
[Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The biological treatment of municipal sewage sludge, including anaerobic digestion and composting, was reviewed with the purpose of establishing inventory data to address all the inputs and outputs related to sludge treatment. We identified 193 scientific papers, resulting in 64 datasets on anaerobic digestion and 35 datasets on composting. For anaerobic digestion, biogas production varied significantly (up to a factor of four) depending on the sludge. A useful correlation was identified between the amount of methane produced and the degradation of volatile solids. According to statistical tests, no significant differences were found in biogas production for mesophilic and thermophilic digesters. In addition, methane content varied significantly, and very few data were available for digestate composition or for energy consumption and recovery. For composting, accurate estimates relating to the degradation of sewage sludge could not be made, since organic bulking materials were part of the final composted product. Data on emissions to air are currently scarce, which points to the need for more published information. The inventory data evaluated herein are useful in the feasibility assessment of the biological treatment of sewage sludge, for comparing technologies, for example in LCA studies and as a basis for evaluating the performance of a specific biological sludge treatment plant. However, a great deal of the reviewed data originated from laboratory and pilot-scale studies, and so there is a need for more complete datasets on the performance of full-scale technologies, in order to establish full inventories and identify differences in technologies and operational conditions.
Collapse