1
|
Elmoutez S, Ayyoub H, Necibi MC, Elmidaoui A, Taky M. Enhanced Pollutant Removal and Antifouling in an Aerobic Ceramic Membrane Bioreactor with Bentonite for Pharmaceutical Wastewater Treatment. MEMBRANES 2024; 14:205. [PMID: 39452817 PMCID: PMC11509799 DOI: 10.3390/membranes14100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 10/26/2024]
Abstract
This study examined the impact of adding bentonite clay (concentration of 1.5 to 10 g/L) to a pilot-scale aerobic ceramic membrane bioreactor (AeCMBR) for treating pharmaceutical wastewater (PhWW). The hydraulic retention time (HRT) was maintained at 24 h; the dissolved oxygen was between 2 mg/L (on) and 4 mg/L (off) throughout operation. Organic and nitrogen pollution removal rates and heavy metal (Cu, Ni, Pb, Zn) reduction rates were assessed. The chemical oxygen demand (COD) removal efficiency exceeded 82%. Adsorption improved ammonia (NH4+) removal to 78%; the addition of 5 g of bentonite resulted in a 38% improvement compared with the process without bentonite. The average nitrate concentration decreased from 169.69 mg/L to 43.72 mg/L. The average removal efficiencies for Cu, Ni, Pb and Zn were 86%, 68.52%, 46.90% and 56.76%, respectively. Bentonite at 5 g/L significantly reduced membrane fouling. The cost-benefit analysis enabled us to predict that the process will meet the multiple objectives of durability, treatment performance and economic viability. The combination of an AeCMBR and bentonite adsorption has proven to be a valuable solution for treating highly polluted wastewater.
Collapse
Affiliation(s)
- Salaheddine Elmoutez
- International Water Research Institute IWRI, Mohammed VI Polytechnic University, Lot 660, Ben Guerir 43150, Morocco; (M.C.N.); (A.E.)
| | - Hafida Ayyoub
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra BP 1246, Morocco; (H.A.); (M.T.)
| | - Mohamed Chaker Necibi
- International Water Research Institute IWRI, Mohammed VI Polytechnic University, Lot 660, Ben Guerir 43150, Morocco; (M.C.N.); (A.E.)
| | - Azzedine Elmidaoui
- International Water Research Institute IWRI, Mohammed VI Polytechnic University, Lot 660, Ben Guerir 43150, Morocco; (M.C.N.); (A.E.)
| | - Mohamed Taky
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra BP 1246, Morocco; (H.A.); (M.T.)
| |
Collapse
|
2
|
Chen X, Wang X, Jia Z, Yang C, Liu Z, Wei Y, Wang M, Liang M. Weakened Mn-O bond in Mn-Ce catalysts through K doping induced oxygen activation for boosting benzene oxidation at low temperatures. J Colloid Interface Sci 2024; 666:88-100. [PMID: 38583213 DOI: 10.1016/j.jcis.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
K-doped Mn-Ce solid solution catalysts were synthesized using a combination of coprecipitation and hydrothermal methods, demonstrating excellent performance in benzene oxidation. The catalyst K1Ce5Mn5 exhibited comparable activity to noble metal catalysts, achieving a 90 % benzene conversion at approximately 194 ℃. Durable tests under dry and moist conditions revealed that the catalyst could maintain its activity for 50 h at 218 ℃ and 236 ℃, respectively. Characterization results indicated that the catalyst's enhanced activity resulted from the weakened Mn-O bonding caused by the introduction of K+, facilitating the activation of oxygen and its involvement in the reaction. CeOx, the main crystalline phase of Mn-Ce solid solutions, provided abundant oxygen vacancies for capturing and activating oxygen molecules for the weakened Mn-O structures. This conclusion was further supported by partial density of state analysis from density functional theory computations, revealing that the introduction of K+ weakened the orbital hybridization of Mn3d and O2p. Finally, in situ diffuse reflectance infrared Fourier-transform spectroscopy (in situ DRIFTS) studies on Ce5Mn5 and K1Ce5Mn5 catalysts suggested that the introduction of K+ promoted the conversion of adsorbed benzene. Furthermore, intermediate products were transformed more rapidly for K1Ce5Mn5 compared to Ce5Mn5.
Collapse
Affiliation(s)
- Xi Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Jinzhong 030600, China; Shanxi Institute of Eco-Environmental Planning and Technology, Taiyuan 030009, China
| | - Xiaoyan Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Ziliang Jia
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Chao Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Jinzhong 030600, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Yuexing Wei
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Mengxue Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Meisheng Liang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Jinzhong 030600, China.
| |
Collapse
|
3
|
Sadri N, Baghernejad M, Ghasemi-Fasaei R, Moosavi AA, Hardie AG. Characterization of clay and nanoclay extracted from a semi-arid Vertisol and investigation of their carbon sequestration potential. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:96. [PMID: 38153593 DOI: 10.1007/s10661-023-12246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Mitigation of global climate change by means such as soil carbon (C) sequestration has become an important area of research. Soil organic matter (SOM) that is stabilized with clay minerals is the most persistent in soils. Currently, little is known regarding the C sequestration ability of nanoclay extracted from Vertisols in semi-arid regions. Therefore, the aim of this study was to extract and characterize nanoclay and bulk clay from a Vertisol from Iran, in terms of physicochemical surface properties and resistance of SOM to chemical oxidation. The clay fractions were studied before and after H2O2 treatment by total C analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), pyrolysis gas chromatography mass spectrometry (GC-MS), Fourier transform infrared (FTIR) spectroscopy, specific surface area analysis, and zeta potential. TEM and SEM images showed that the diameter of the extracted nanoclays was 16-46 nm and their morphology was more porous than bulk soil clay. The nanoclay had a much greater specific surface area (111.9 m2 g-1) than the bulk clay (67.9 m2 g-1). According to total C, FTIR, and zeta potential results, the nanoclay was enriched with 1.4 times more C than the bulk clay after peroxide treatment, indicating enhanced soil C stabilization in the nanoclay. About 45% of the peroxide-resistant SOM in the nanoclay was associated with N-containing compounds, indicating that these compounds contribute to SOM stability. The results demonstrate important role of nanoclay in soil C sequestration in Vertisols.
Collapse
Affiliation(s)
- Niloofar Sadri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Majid Baghernejad
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Akbar Moosavi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ailsa G Hardie
- Department of Soil Science, University of Stellenbosch, Private Bag X1, Stellenbosch, 7600, South Africa
| |
Collapse
|
4
|
López-Rodríguez D, Micó-Vicent B, Bonet-Aracil M, Cases F, Bou-Belda E. The Optimal Concentration of Nanoclay Hydrotalcite for Recovery of Reactive and Direct Textile Colorants. Int J Mol Sci 2022; 23:ijms23179671. [PMID: 36077071 PMCID: PMC9456399 DOI: 10.3390/ijms23179671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Concerns about the health of the planet have grown dramatically, and the dyeing sector of the textile industry is one of the most polluting of all industries. Nanoclays can clean dyeing wastewater using their adsorption capacities. In this study, as a new finding, it was possible to analyze and quantify the amount of metal ions substituted by anionic dyes when adsorbed, and to determine the optimal amount of nanoclay to be used to adsorb all the dye. The tests demonstrated the specific amount of nanoclay that must be used and how to optimize the subsequent processes of separation and processing of the nanoclay. Hydrotalcite was used as the adsorbent material. Direct dyes were used in this research. X-ray diffraction (XRD) patterns allowed the shape recovery of the hydrotalcite to be checked and confirmed the adsorption of the dyes. An FTIR analysis was used to check the presence of characteristic groups of the dyes in the resulting hybrids. The thermogravimetric (TGA) tests corroborated the dye adsorption and the thermal fastness improvement. Total solar reflectance (TSR) showed increased radiation protection for UV-VIS-NIR. Through the work carried out, it has been possible to establish the maximum adsorption point of hydrotalcite.
Collapse
Affiliation(s)
- Daniel López-Rodríguez
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, CP 03801 Alcoy, Spain
- Correspondence:
| | - Bàrbara Micó-Vicent
- Departamento de Ingeniería Gráfica, Universitat Politècnica de València Plaza Ferrándiz y Carbonell s/n, CP 03801 Alcoy, Spain
| | - Marilés Bonet-Aracil
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, CP 03801 Alcoy, Spain
| | - Francisco Cases
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, CP 03801 Alcoy, Spain
| | - Eva Bou-Belda
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, CP 03801 Alcoy, Spain
| |
Collapse
|
5
|
Sun W, Li J, Li H, Jin B, Li Z, Zhang T, Zhu X. Mechanistic insights into ball milling enhanced montmorillonite modification with tetramethylammonium for adsorption of gaseous toluene. CHEMOSPHERE 2022; 296:133962. [PMID: 35157885 DOI: 10.1016/j.chemosphere.2022.133962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Montmorillonite is widely used for pollutants adsorption due to its porous structure and low price. However, the low specific surface area and small porosity limit its application in gas adsorption field. In this study, montmorillonite was organically modified using a facile dry ball milling method by tetramethylammonium bromide. The adsorption behaviour of toluene as a model VOC compound on organic montmorillonite was systematically investigated through adsorption breakthrough curves, adsorption kinetics and isotherms. After modification by ball milling, the specific surface area of ball milling with tetramethylammonium bromide for montmorillonite modification (BMTMt) was increased from 20.6 m2/g to 186.4 m2/g, and the microporosity proportion was up to 47%. Dynamic adsorption experiments showed that the best performance of BMTMt for toluene (55.9 mg/g) was 6 times higher than that of original montmorillonite (8.8 mg/g). Compared with the water bath preparation method, ball milling method promoted the intercalation of tetramethylammonium bromide into the layers of montmorillonite, resulting in a higher proportion of micropores. Density functional theory calculations indicated that the interaction between tetramethylammonium bromide and montmorillonite was mainly electrostatic forces, and the enhanced adsorption performance for toluene was mainly through microporous filling. BMTMt was proved to be a promising adsorbent for VOCs removal.
Collapse
Affiliation(s)
- Wenrui Sun
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baichuan Jin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhifeng Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaobiao Zhu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|