1
|
da Silva NEP, Bezerra LCA, Araújo RF, Moura TA, Vieira LHS, Alves SBS, Fregolente LG, Ferreira OP, Avelino F. Coconut shell-based biochars produced by an innovative thermochemical process for obtaining improved lignocellulose-based adsorbents. Int J Biol Macromol 2024; 275:133685. [PMID: 38971283 DOI: 10.1016/j.ijbiomac.2024.133685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The urgent need for a simple and cost-effective thermochemical process to produce biochar has prompted this study. The aim was to develop a straightforward thermochemical process under O2-limited conditions for the production of coconut-based biochar (CBB) and to assess its ability to remove methylene blue (MB) through adsorption, comparing it with CBB produced by slow pyrolysis. CBBs were obtained under different atmospheric conditions (O2-limited, muffle furnace biochar (MFB); and inert, pyrolytic reactor biochar (PRB)), at 350, 500, and 700 °C, and for 30 and 90'. MFB and PRB were characterized using FTIR, RAMAN, SEM, EDS, and XRD analyses. Adsorption tests were conducted using 1.0 g L-1 of MFB and PRB, 10 mg L-1 of MB at 25 °C for 48 h. Characterization revealed that atmospheric conditions significantly influenced the yield and structural features of the materials. PRB exhibited higher yields and larger cavities than MFB, but quite similar spectral features. Adsorption tests indicated that MFB and PRB had qt values of 33.1 and 9.2 mg g-1, respectively, which were obtained at 700 °C and 90', and 700 °C and 30', respectively. This alternative method produced an innovative and promising lignocellulose-based material with great potential to be used as a biosorbent.
Collapse
Affiliation(s)
| | - Luiz Carlos Alves Bezerra
- Department of Research, Extension and Production, Federal Institute of Education, Science and Technology of Ceará, 63503-790 Iguatu, CE, Brazil
| | - Rayanne Ferreira Araújo
- Department of Research, Extension and Production, Federal Institute of Education, Science and Technology of Ceará, 63503-790 Iguatu, CE, Brazil
| | - Thiago A Moura
- Department of Physics, Federal University of Ceará, 60455-900 Fortaleza, CE, Brazil
| | | | | | | | - Odair P Ferreira
- Department of Physics, Federal University of Ceará, 60455-900 Fortaleza, CE, Brazil; Department of Chemistry, State University of Londrina, 86050-482 Londrina, PR, Brazil
| | - Francisco Avelino
- Department of Research, Extension and Production, Federal Institute of Education, Science and Technology of Ceará, 63503-790 Iguatu, CE, Brazil.
| |
Collapse
|
2
|
Mishra A, Pandey J, Ojha H, Sharma M, Kaur L, Pandey A, Sharma P, Murab S, Singhal R, Pathak M. A green and economic approach to synthesize magnetic Lagenaria siceraria biochar (γ-Fe 2O 3-LSB) for methylene blue removal from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34038-34055. [PMID: 38696013 DOI: 10.1007/s11356-024-33477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
In the printing and textile industries, methylene blue (a cationic azo dye) is commonly used. MB is a well-known carcinogen, and another major issue is its high content in industrial discharge. There are numerous removal methodologies that have been employed to remove it from industrial discharge; however, these current modalities have one or more limitations. In this research, a novel magnetized biochar (γ-Fe2O3-LSB) was synthesized using Lagenaria siceraria peels which were further magnetized via the co-precipitation method. The synthesized γ-Fe2O3-LSB was characterized using FTIR, X-ray diffraction, Raman, SEM-EDX, BET, and vibrating sample magnetometry (VSM) for the analysis of magnetic properties. γ-Fe2O3-LSB showed a reversible type IV isotherm, which is a primary characteristic of mesoporous materials. γ-Fe2O3-LSB had a specific surface area (SBET = 135.30 m2/g) which is greater than that of LSB (SBET = 11.54 m2/g). γ-Fe2O3-LSB exhibits a saturation magnetization value (Ms) of 3.72 emu/g which shows its superparamagnetic nature. The batch adsorption process was performed to analyze the adsorptive removal of MB dye using γ-Fe2O3-LSB. The adsorption efficiency of γ-Fe2O3-LSB for MB was analyzed by varying parameters like the initial concentration of adsorbate (MB), γ-Fe2O3-LSB dose, pH effect, contact time, and temperature. Adsorption isotherm, kinetic, and thermodynamics were also studied after optimizing the protocol. The non-linear Langmuir model fitted the best to explain the adsorption isotherm mechanism and resulting adsorption capacity ( q e =54.55 mg/g). The thermodynamics study showed the spontaneous and endothermic nature, and pseudo-second-order rate kinetics was followed during the adsorption process. Regeneration study showed that γ-Fe2O3-LSB can be used up to four cycles. In laboratory setup, the cost of γ-Fe2O3-LSB synthesis comes out to be 162.75 INR/kg which is low as compared to commercially available adsorbents. The results obtained suggest that magnetic Lagenaria siceraria biochar, which is economical and efficient, can be used as a potential biochar material for industrial applications in the treatment of wastewater.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Jyoti Pandey
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Himanshu Ojha
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Malti Sharma
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India
| | - Lajpreet Kaur
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Akhilesh Pandey
- Solid State Physics Laboratory, DRDO, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Pankaj Sharma
- BioX Center, School of Biosciences & Bioengineering, IIT Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Sumit Murab
- BioX Center, School of Biosciences & Bioengineering, IIT Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Rahul Singhal
- Department of Chemistry, Shivaji College, University of Delhi, Delhi, 110027, India
| | - Mallika Pathak
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Removal of toxic lead from aqueous solution using a low-cost adsorbent. Sci Rep 2023; 13:3278. [PMID: 36841837 PMCID: PMC9968331 DOI: 10.1038/s41598-023-29674-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 02/27/2023] Open
Abstract
Valorization of waste materials and byproducts as adsorbents is a sustainable approach for water treatment systems. Pottery Granules (PG) without any chemical and thermal modification were used as a low-cost, abundant, and environmentally benign adsorbent against Pb(II), the toxic metal in drinking water. The porous structure and complex mineral composition of PG made it an efficient adsorbent material for Pb(II). The effect of key physicochemical factors was investigated to determine the significance of contact time, PG dose, pH, solution temperature, and coexisting ions, on the process. Pb(II) removal increased by PG dose in the range of 5-15 g/L, and agitation time from 5 to 60 min. Increasing Pb(II) concentration led to a drop in Pb(II) removal, however, adsorption capacity increased significantly as concentration elevated. Pb(II) removal also increased significantly from ~ 45% to ~ 97% by pH from 2 to 12. A ~ 20% improvement in Pb(II) adsorption after rising the solution temperature by 30˚C, indicated the endothermic nature of the process. The sorption was described to be a favorable process in which Pb(II) was adsorbed in a multilayer onto the heterogeneous PG surface. The qmax of 9.47 mg/g obtained by the Langmuir model was superior among many reported low-cost adsorbents. The Pb(II) adsorption was described well by the Pseudo- first-order kinetic model. Na+, Mg2+, Ca2+, Cd2+, and Zn2+ showed a negligible effect on Pb(II) adsorption. However, the presence of Mn2+ and Fe2+ significantly hindered the process efficacy. In conclusion, the use of waste material such as PG against Pb(II) is a viable option from the economic and effectiveness points of view.
Collapse
|
4
|
Thomas AM, Kuntaiah K, Korra MR, Nandakishore SS. Efficient removal of fluoride on aluminum modified activated carbon: an adsorption behavioral study and application to remediation of ground water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:69-80. [PMID: 36840367 DOI: 10.1080/10934529.2023.2177059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
In recent times, ground water contamination by toxic elements is of great concern and it is to be addressed for consumption of human, animal, and plant growth. In this context, we have synthesized an adsorbent by modifying commercially available activated carbon with aluminum and tested for de-fluoridation studies. The activity results suggested that the optimized adsorbent is highly efficient in removing the fluoride from ground water. Adsorption maxima are obtained over a wide pH range from 4 to 9, with a contact time of 15 minutes at a dosage of 4 g/L. The results also revealed that the synthesized adsorbent is suitable for application in ground water without any pH adjustment and has exhibited 85%-95% tolerance for common anions in the range of 100-500 mg/L. Equilibrium adsorption isotherm models as well as kinetics of adsorption were applied for the system. An adsorption capacity of 20.4 mg/g and fast kinetics observed are most favorable for defluoridation. Reuse of adsorbent over repeated cycles was investigated. Residual amount of aluminum in treated water is found to be negligible. The removal of toxic elements like Pb, Cd, Cr, Cu, Ni, Zn, As, and Se under the optimized experimental conditions has also been investigated. Al-AC found to be a highly promising material for removal of fluoride and toxic metals from drinking water.
Collapse
Affiliation(s)
- Anitha Mary Thomas
- Atomic Minerals Directorate for Exploration and Research Nagarbhavi, Bangalore, India
| | - Kuncham Kuntaiah
- Atomic Minerals Directorate for Exploration and Research Nagarbhavi, Bangalore, India
| | - Mareswara Rao Korra
- Atomic Minerals Directorate for Exploration and Research Nagarbhavi, Bangalore, India
| | - S S Nandakishore
- Atomic Minerals Directorate for Exploration and Research Nagarbhavi, Bangalore, India
| |
Collapse
|
5
|
Sayadi MH, Pavlaki MD, Loureiro S, Martins R, Tyler CR, Mansouri B, Kharkan J, Shekari H. Co-exposure of zinc oxide nanoparticles and multi-layer graphenes in blackfish (Capoeta fusca): evaluation of lethal, behavioural, and histopathological effects. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:425-439. [PMID: 35089487 DOI: 10.1007/s10646-022-02521-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 05/24/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) and multi-layer graphenes (MLGs) are widely used, and due to the lack of appropriate wastewater treatment may end up in the aquatic environment, with unknown consequences to biota. The main purpose of this study was to assess the acute toxicity, histopathological and behavioural changes caused by the exposure of ZnO NPs and MLGs, alone and combined, to the blackfish Capoeta fusca. The estimated mean 96 h-LC50 for ZnO NPs was 4.9 mg L-1 and 68.4 mg L-1 for MLGs. In combination, MLGs increased the acute toxicity of the ZnO NPs. The effects of the different NPs on the gills included hyperplasia, aneurisms, and fusion of the lamellae. In the intestine, exposure to the NPs resulted in an increase in the number and swelling of goblet cells and tissue degeneration. Loss of balance, restlessness, erratic and abnormal swimming patterns were the most common behavioural changes seen in the ZnO NPs' exposed blackfish. In contrast with the acute toxicity findings, MLGs decreased the histopathological and behavioural effects of the ZnO NPs on both gills and intestinal tissues as well as fish behaviour. Our experimental results illustrated insights into the simultaneous exposure assessment of metal-based NPs and carbon nanomaterials, although further research is needed on the interactions exposure of these substances to interpreting the toxicological effects of metal-based nanomaterials seen in exposed organisms.
Collapse
Affiliation(s)
- Mohammad Hossein Sayadi
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
- Department of Environmental Engineering, Faculty of Agriculture and Natural Resources, Ardakan University, Ardakan, Iran
| | - Maria D Pavlaki
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Roberto Martins
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon, EX4 4QD, UK
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javad Kharkan
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
| | - Hossein Shekari
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
6
|
Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Huang L, Wan K, Yan J, Wang L, Li Q, Chen H, Zhang H, Xiao T. Nanomaterials in Water Applications: Adsorbing Materials for Fluoride Removal. NANOMATERIALS 2021; 11:nano11071866. [PMID: 34361252 PMCID: PMC8308480 DOI: 10.3390/nano11071866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Fluoride is an important pollutant in many countries, such as China, India, Australia, the United States, Ethiopia, etc [...].
Collapse
Affiliation(s)
- Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (K.W.); (J.Y.); (L.W.); (Q.L.); (H.C.); (T.X.)
| | - Kuilin Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (K.W.); (J.Y.); (L.W.); (Q.L.); (H.C.); (T.X.)
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (K.W.); (J.Y.); (L.W.); (Q.L.); (H.C.); (T.X.)
| | - Lei Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (K.W.); (J.Y.); (L.W.); (Q.L.); (H.C.); (T.X.)
| | - Qian Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (K.W.); (J.Y.); (L.W.); (Q.L.); (H.C.); (T.X.)
| | - Huabin Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (K.W.); (J.Y.); (L.W.); (Q.L.); (H.C.); (T.X.)
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (K.W.); (J.Y.); (L.W.); (Q.L.); (H.C.); (T.X.)
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
- Correspondence:
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (K.W.); (J.Y.); (L.W.); (Q.L.); (H.C.); (T.X.)
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|