1
|
Metabolic flux modeling of Gluconobacter oxydans enables improved production of bioleaching organic acids. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Sarkar A, Rajarathinam R, Kumar PS, Rangasamy G. Maximization of growth and lipid production of a toxic isolate of Anabaena circinalis by optimization of various parameters with mathematical modeling and computational validation. J Biotechnol 2022; 357:38-46. [PMID: 35952899 DOI: 10.1016/j.jbiotec.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Toxic cyanobacterial blooms are recurrent for few decades throughout the globe, due to climate change, atmospheric warming and various anthropogenic activities with severe impacts of potential toxins on various ecosystems finally affecting the entire environment. These cyanobacteria are merely unexplored regarding their biochemical components except toxins. Variable influences and interactions of different factors including nitrogen, carbon, and availability of light are well known to crucially regulate cyanobacterial growth and metabolism. Thus, current research work is motivated for the evaluation and optimization of the effects of the aforementioned vital factors for improvement of biomass and lipid production of a freshwater, toxic strain of Anabaena circinalis. The modelling and optimization of factors such as nitrogen, light intensity and bicarbonate concentration (source of carbon) to maximize growth and lipid production were based on 20 design point experiments by Response Surface Methodology (RSM) and optimized values were further improved and validated by Particle Swarm Optimization (PSO) algorithm. The maximum optima were obtained 1.829 g L-1 and 39.64 % for biomass production and lipid content respectively from PSO optimization with two different sets of optimal values of factors. It shows 0.44 % and 2.77 % higher values of responses than that of RSM optimization. These asynchronous findings pioneered the enhanced lipid accumulation as well as the growth of a toxic cyanobacterium by optimizing interaction effects of culture conditions through various statistical and computational approaches.
Collapse
Affiliation(s)
- Aratrika Sarkar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Ravikumar Rajarathinam
- Center for Bioenergy and Bioproduct Development (CBBD), Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603 110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab - 140413, India
| |
Collapse
|
3
|
Dos Santos Machado L, Dörr F, Dörr FA, Frascareli D, Melo DS, Gontijo ESJ, Friese K, Pinto E, Rosa AH, Pompêo MM, Moschini-Carlos V. Permanent occurrence of Raphidiopsis raciborskii and cyanotoxins in a subtropical reservoir polluted by domestic effluents (Itupararanga reservoir, São Paulo, Brazil). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18653-18664. [PMID: 34697712 DOI: 10.1007/s11356-021-16994-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Toxic cyanobacteria blooms are a frequent problem in subtropical reservoirs and freshwater systems. The purpose of this study was to investigate the occurrence of potentially toxic cyanobacteria and the environmental conditions associated with the presence of cyanotoxins in a Brazilian subtropical reservoir. Five collections were carried out at seven sampling locations in the reservoir, during the rainy and dry seasons, between the years 2016 and 2017. There was permanent occurrence of Raphidiopsis raciborskii (Woloszynska) Aguilera, Berrendero Gómez, Kastovsky, Echenique & Salerno (Phycologia 57(2):130-146, 2018), ranging between dominant and abundant, with an average biomass of 38.8 ± 29.9 mg L-1. Also abundant were Dolichospermum solitarium, D. planctonicum, Planktothrix isothrix, and Aphanizomenon gracile. Saxitoxin (STX) was detected in all the collected samples (0.11 ± 0.05 µg L-1). Microcystin (MC) was also detected, but at lower concentrations (0.01 ± 0.0 µg L-1). Low availability of NO3- and phosphorus limitation had significant effects on the R. raciborskii biomass and the levels of STX and MC. It was observed that R. raciborskii was sensitive to thermal stratification, at the same time that STX levels were higher. This suggested that STX was produced under conditions that restricted the growth of R. raciborskii. These are important findings, because they add information about the permanent occurrence of STX and R. raciborskii in an aquatic ecosystem limited by phosphorus, vulnerable to climatic variations, and polluted by domestic effluents.
Collapse
Affiliation(s)
| | - Fabiane Dörr
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - Felipe Augusto Dörr
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - Daniele Frascareli
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Darllene S Melo
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Erik S J Gontijo
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Kurt Friese
- Lake Research Department, UFZ-Helmholtz Centre for Environmental Research, Brueckstr 3a, 39114, Magdeburg, Germany
| | - Ernani Pinto
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - André Henrique Rosa
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Marcelo M Pompêo
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
4
|
Influence of Nutrient Manipulation on Growth and Biochemical Constituent in Anabaena variabilis and Nostoc muscorum to Enhance Biodiesel Production. SUSTAINABILITY 2021. [DOI: 10.3390/su13169081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present study aims to improve biomass and biochemical constituents, especially lipid production of Anabaena variabilis and Nostoc muscorum by formulating an optimal growth condition using various concentrations of nutrients (NO3−, PO43− and CO32−) for biodiesel production. The supplementation of the three nutrients by +50% showed the maximum dry weight and biomass productivity, while the macromolecule contents were varied. The depletion of N-NO3− by 50% N-NO3− showed the maximum lipid yield (146.67 mg L−1) in A. variabilis and the maximum carbohydrate contents (285.33 mg L−1) in N. muscorum with an increase of 35% and 30% over control of the synthetic medium, respectively. However, variation in P-PO43− and C-CO32− showed insignificant improving results for all biochemical compositions in both cyanobacteria. A. variabilis was the superior species for lipid and protein accumulation; however, N. muscorum showed the maximum carbohydrate content. Accordingly, A. variabilis was selected for biodiesel production. In A. variabilis, −50% N-NO3− resulted in 35% higher lipid productivity compared to the control. Furthermore, the fatty acid profile and biodiesel quality-related parameters have improved under this condition. This study has revealed the strategies to improve A. variabilis lipid productivity for biodiesel production for small-scale in vitro application in terms of fuel quality under low nitrate levels.
Collapse
|