1
|
Saxena P, Kumar A, Muzammil M, Bojjagani S, Patel DK, Kumari A, Khan AH, Kisku GC. Spatio-temporal distribution and source contributions of the ambient pollutants in Lucknow city, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:693. [PMID: 38963455 DOI: 10.1007/s10661-024-12832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Clean air is imperative to the survival of all life forms on the planet. However, recent times have witnessed enormous escalation in urban pollution levels. It is therefore, incumbent upon us to decipher measures to deal with it. In perspective, the present study was carried out to assess PM10 and PM2.5 loading, metallic constituents, gaseous pollutants, source contributions, health impact and noise level of nine-locations, grouped as residential, commercial, and industrial in Lucknow city for 2019-21. Mean concentrations during pre-monsoon for PM10, PM2.5, SO2 and NO2 were: 138.2 ± 35.2, 69.1 ± 13.6, 8.5 ± 3.3 and 32.3 ± 7.4 µg/m3, respectively, whereas post-monsoon concentrations were 143.0 ± 33.3, 74.6 ± 14.5, 12.5 ± 2.1, and 35.5 ± 6.3 µg/m3, respectively. Exceedance percentage of pre-monsoon PM10 over National Ambient Air Quality Standards (NAAQS) was 38.2% while that for post-monsoon was 43.0%; whereas corresponding values for PM2.5 were 15.2% and 24.3%. Post-monsoon season showed higher particulate loading owing to wintertime inversion and high humidity conditions. Order of elements associated with PM2.5 is Co < Cd < Cr < Ni < V < Be < Mo < Mn < Ti < Cu < Pb < Se < Sr < Li < B < As < Ba < Mg < Al < Zn < Ca < Fe < K < Na and that with PM10 is Co < Cd < Ni < Cr < V < Ti < Be < Mo < Cu < Pb < Se < Sr < Li < B < As < Mn < Ba < Mg < Al < Fe < Zn < K < Na < Ca. WHO AIRQ + ascertained 1654, 144 and 1100 attributable cases per 0.1 million of population to PM10 exposure in 2019-21. Source apportionment was carried out using USEPA-PMF and resolved 6 sources with highest percent contributions including road dust re-entrainment, biomass burning and vehicular emission. It is observed that residents of Lucknow city regularly face exposure to particulate pollutants and associated constituents making it imperative to develop pollution abetment strategies.
Collapse
Affiliation(s)
- Priya Saxena
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Ankit Kumar
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Muzammil
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sreekanth Bojjagani
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Division, ASSIST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Alka Kumari
- Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Altaf Husain Khan
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ganesh Chandra Kisku
- Environmental Monitoring Division, FEST, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Zeb B, Ditta A, Alam K, Sorooshian A, Din BU, Iqbal R, Habib Ur Rahman M, Raza A, Alwahibi MS, Elshikh MS. Wintertime investigation of PM 10 concentrations, sources, and relationship with different meteorological parameters. Sci Rep 2024; 14:154. [PMID: 38167892 PMCID: PMC10761681 DOI: 10.1038/s41598-023-49714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Meteorological factors play a crucial role in affecting air quality in the urban environment. Peshawar is the capital city of the Khyber Pakhtunkhwa province in Pakistan and is a pollution hotspot. Sources of PM10 and the influence of meteorological factors on PM10 in this megacity have yet to be studied. The current study aims to investigate PM10 mass concentration levels and composition, identify PM10 sources, and quantify links between PM10 and various meteorological parameters like temperature, relative humidity (RH), wind speed (WS), and rainfall (RF) during the winter months from December 2017 to February 2018. PM10 mass concentrations vary from 180 - 1071 µg m-3, with a mean value of 586 ± 217 µg m-3. The highest concentration is observed in December, followed by January and February. The average values of the mass concentration of carbonaceous species (i.e., total carbon, organic carbon, and elemental carbon) are 102.41, 91.56, and 6.72 μgm-3, respectively. Water-soluble ions adhere to the following concentration order: Ca2+ > Na+ > K+ > NH4+ > Mg2+. Twenty-four elements (Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Co, Zn, Ga, Ge, As, Se, Kr, Ag, Pb, Cu, and Cd) are detected in the current study by PIXE analysis. Five sources based on Positive Matrix Factorization (PMF) modeling include industrial emissions, soil and re-suspended dust, household combustion, metallurgic industries, and vehicular emission. A positive relationship of PM10 with temperature and relative humidity is observed (r = 0.46 and r = 0.56, respectively). A negative correlation of PM10 is recorded with WS (r = - 0.27) and RF (r = - 0.46). This study's results motivate routine air quality monitoring owing to the high levels of pollution in this region. For this purpose, the establishment of air monitoring stations is highly suggested for both PM and meteorology. Air quality standards and legislation need to be revised and implemented. Moreover, the development of effective control strategies for air pollution is highly suggested.
Collapse
Affiliation(s)
- Bahadar Zeb
- Department of Mathematics, Shaheed Benazir Bhutto University Sheringal, Dir (Upper), 18000, Khyber Pakhtunkhwa, Pakistan.
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa, 18000, Pakistan.
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Khan Alam
- Department of Physics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Hydrology and Atmospheric Sciences, University Arizona, Tucson, AZ, 85721, USA
| | - Badshah Ud Din
- University Boys College, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammed Habib Ur Rahman
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture Multan, Punjab, Pakistan
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Ahsan Raza
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany.
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374, Müncheberg, Germany.
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Das CP, Goswami S, Swain BK, Panda BP, Das M. Air mapping during COVID-19 and association between air pollutants and physiochemical parameters of the plants using structural equal modeling: a case study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:997. [PMID: 37493963 DOI: 10.1007/s10661-023-11614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
In urban areas around the world, air pollution introduced by vehicular movement is a key concern. However, restricting vehicular traffic during the COVID-19 shutdown improved air quality to some extent. This study was conducted out in the smart city of Bhubaneswar, which is also the state capital of Odisha, India. The study has tried to map Bhubaneswar by collecting the air quality data before, during, and after the COVID lockdown of six air quality monitoring stations present in Bhubaneswar established under "National Ambient Air Monitoring Program" (NAMP). Furthermore, plants, which are the most vulnerable to air pollution, can show a variety of visible changes depending on their level of sensitivity. Moreover, leaves of Mangifera indica, Monoon longifolium, Azadirachta indica, Millettia pinnata, Aegle marmelos were collected from nearby of six air monitoring stations to assess the "Air Pollution Tolerance Index." M. indica was found to be intermediately tolerant, and all of the other species were found to be sensitive. The structural equation modeling results also revealed a significant relationship between total chlorophyll content, relative water content, ascorbic acid content, leaf extract pH, APTI with species, air quality index, and PM10.
Collapse
Affiliation(s)
- Chidananda Prasad Das
- Environmental Science Program, Department of Chemistry, ITER, S 'O' A Deemed to be University, Bhubaneswar, Odisha, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vanivihar, Odisha, India
| | | | - Bibhu Prasad Panda
- Environmental Science Program, Department of Chemistry, ITER, S 'O' A Deemed to be University, Bhubaneswar, Odisha, India
| | - Mira Das
- Environmental Science Program, Department of Chemistry, ITER, S 'O' A Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Ambade PN, Thavorn K, Pakhale S. COVID-19 Pandemic: Did Strict Mobility Restrictions Save Lives and Healthcare Costs in Maharashtra, India? Healthcare (Basel) 2023; 11:2112. [PMID: 37510552 PMCID: PMC10379405 DOI: 10.3390/healthcare11142112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Maharashtra, India, remained a hotspot during the COVID-19 pandemic. After the initial complete lockdown, the state slowly relaxed restrictions. We aim to estimate the lockdown's impact on COVID-19 cases and associated healthcare costs. METHODS Using daily case data for 84 days (9 March-31 May 2020), we modeled the epidemic's trajectory and predicted new cases for different phases of lockdown. We fitted log-linear models to estimate the growth rate, basic (R0), daily reproduction number (Re), and case doubling time. Based on pre-restriction and Phase 1 R0, we predicted new cases for the rest of the restriction phases, and we compared them with the actual number of cases during each phase. Furthermore, using the published and gray literature, we estimated the costs and savings of implementing these restrictions for the projected period, and we performed a sensitivity analysis. RESULTS The estimated median R0 during the different phases was 1.14 (95% CI: 0.85, 1.45) for pre-lockdown, 1.67 (95% CI: 1.50, 1.82) for phase 1 (strict mobility restrictions), 1.24 (95% CI: 1.12, 1.35) for phase 2 (extension of phase 1 with no restrictions on agricultural and essential services), 1.12 (95% CI: 1.01, 1.23) for phase 3 (extension of phase 2 with mobility relaxations in areas with few infections), and 1.05 (95% CI: 0.99, 1.123) for phase 4 (implementation of localized lockdowns in high-case-load areas with fewer restrictions on other areas), respectively. The corresponding doubling time rate for cases (in days) was 17.78 (95% CI: 5.61, -15.19), 3.87 (95% CI: 3.15, 5.00), 10.37 (95% CI: 7.10, 19.30), 20.31 (95% CI: 10.70, 212.50), and 45.56 (95% CI: 20.50, -204.52). For the projected period, the cases could have reached 631,819 without the lockdown, as the actual reported number of cases was 64,975. From a healthcare perspective, the estimated total value of averted cases was INR 194.73 billion (USD 2.60 billion), resulting in net cost savings of 84.05%. The Incremental Cost-Effectiveness Ratio (ICER) per Quality Adjusted Life Year (QALY) for implementing the lockdown, rather than observing the natural course of the pandemic, was INR 33,812.15 (USD 450.83). CONCLUSION Maharashtra's early public health response delayed the pandemic and averted new cases and deaths during the first wave of the pandemic. However, we recommend that such restrictions be carefully used while considering the local socio-economic realities in countries like India.
Collapse
Affiliation(s)
- Preshit Nemdas Ambade
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Kednapa Thavorn
- Faculty of Medicine, School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Smita Pakhale
- Faculty of Medicine, School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| |
Collapse
|
5
|
Navasakthi S, Pandey A, Bhari JS, Sharma A. Significant variation in air quality in South Indian cities during COVID-19 lockdown and unlock phases. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:772. [PMID: 37253943 DOI: 10.1007/s10661-023-11375-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
With the spread of COVID-19 pandemic worldwide, the Government of India had imposed lockdown in the month of March 2020 to curb the spread of the virus furthermore. This shutdown led to closure of various institutions, organizations, and industries, and restriction on public movement was also inflicted which paved way to better air quality due to reduction in various industrial and vehicular emissions. To brace this, the present study was carried out to statistically analyze the changes in air quality from pre-lockdown period to unlock 6.0 in South Indian cities, namely, Bangalore, Chennai, Coimbatore, and Hyderabad, by assessing the variation in concentration of PM2.5, PM10, NO2, and SO2 during pre-lockdown, lockdown, and unlock phases. Pollutant concentration data was obtained for the selected timeframe (01 March 2020-30 November 2020) from CPCB, and line graph was plotted which had shown visible variation in the concentration of pollutants in cities taken into consideration. Analysis of variance (ANOVA) was applied to determine the mean differences in the concentration of pollutants during eleven timeframes, and the results indicated a significant difference (F (10,264) = 3.389, p < 0.001). A significant decrease in the levels of PM2.5, PM10, NO2, and SO2 during the lockdown phases was asserted by Tukey HSD results in Bangalore, Coimbatore, and Hyderabad stations, whereas PM10 and NO2 significantly increased during lockdown period in Chennai station. In order to understand the cause of variation in the concentration of pollutants and to find the association of pollutants with meteorological parameters, the Pearson correlation coefficient was used to study the relationship between PM2.5, PM10, NO2, and SO2 concentrations, temperature, rainfall, and wind speed for a span of 15 months, i.e., from January 2020 to March 2021. At a significant level of 99.9%, 99%, and 95%, a significant correlation among the pollutants, rainfall had a major impact on the pollutant concentration in Bangalore, Coimbatore, Hyderabad, and Chennai followed by wind speed and temperature. No significant influence of temperature on the concentration of pollutants was observed in Bangalore station.
Collapse
Affiliation(s)
- Shibani Navasakthi
- Department of Civil Engineering, Chandigarh University, Mohali, Punjab, India
| | - Anuvesh Pandey
- Department of Civil Engineering, Chandigarh University, Mohali, Punjab, India
| | | | - Ashita Sharma
- Department of Civil Engineering, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
6
|
Yeasin M, Paul RK, Das S, Deka D, Karak T. Change in the air due to the coronavirus outbreak in four major cities of India: What do the statistics say? JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 10:100325. [PMID: 37274946 PMCID: PMC10226293 DOI: 10.1016/j.hazadv.2023.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
The onset of the novel Coronavirus (COVID-19) has impacted all sectors of society. To avoid the rapid spread of this virus, the Government of India imposed a nationwide lockdown in four phases. Lockdown, due to COVID-19 pandemic, resulted a decline in pollution in India in general and in dense cities in particular. Data on key air quality indicators were collected, imputed, and compiled for the period 1st August 2018 to 31st May 2020 for India's four megacities, namely Delhi, Mumbai, Kolkata, and Hyderabad. Autoregressive integrated moving average (ARIMA) model and machine learning technique e.g. Artificial Neural Network (ANN) with the inclusion of lockdown dummy in both the models have been applied to examine the impact of anthropogenic activity on air quality parameters. The number of indicators having significant lockdown dummy are six (PM2.5, PM10, NOx, CO, benzene, and AQI), five (PM2.5, PM10, NOx, SO2 and benzene), five (PM10, NOx, CO, benzene and AQI) and three (PM2.5, PM10, and AQI) for Delhi, Kolkata, Mumbai and Hyderabad respectively. It was also observed that the prediction accuracy significantly improved when a lockdown dummy was incorporated. The highest reduction in Mean Absolute Percentage Error (MAPE) is found for CO in Hyderabad (28.98%) followed by the NOx in Delhi (28.55%). Overall, it can be concluded that there is a significant decline in the value of air quality parameters in the lockdown period as compared to the same time phase in the previous year. Insights from the COVID-19 pandemic will help to achieve significant improvement in ambient air quality while keeping economic growth in mind.
Collapse
Affiliation(s)
- Md Yeasin
- ICAR Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Ranjit Kumar Paul
- ICAR Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Sampa Das
- Dibrugarh Polytechnic, Lahowal, Dibrugarh 786010, Assam, India
| | - Diganta Deka
- Upper Assam Advisory Centre, Tea Research Association, Dikom, Dibrugarh, Assam 786101, India
| | - Tanmoy Karak
- Upper Assam Advisory Centre, Tea Research Association, Dikom, Dibrugarh, Assam 786101, India
- Department of Agricultural Chemistry and Soil Science, Nagaland University, Nagaland 797106, India
| |
Collapse
|
7
|
Llaguno-Munitxa M, Bou-Zeid E. Role of vehicular emissions in urban air quality: The COVID-19 lockdown experiment. TRANSPORTATION RESEARCH. PART D, TRANSPORT AND ENVIRONMENT 2023; 115:103580. [PMID: 36573137 PMCID: PMC9771761 DOI: 10.1016/j.trd.2022.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
While the decrease in air pollutant concentration during the COVID-19 lockdown is well documented, neighborhood-scale and multi-city data have not yet been explored systematically to derive a generalizable quantitative link to the drop in vehicular traffic. To bridge this gap, high spatial resolution air quality and georeferenced traffic datasets were compiled for the city of London during three weeks with significant differences in traffic. The London analysis was then augmented with a meta-analysis of lower-resolution studies from 12 other cities. The results confirm that the improvement in air quality can be partially attributed to the drop of traffic density, and more importantly quantifies the elasticity (0.71 for NO2 & 0.56 for PM2.5) of their linkages. The findings can also inform on the future impacts of the ongoing shift to electric vehicles and micro-mobility on urban air quality.
Collapse
Affiliation(s)
- Maider Llaguno-Munitxa
- Faculty of Architecture, Architectural Engineering and Urban Planning, UCLouvain, Place du Levant 1, 1348 Ottignies-Louvain-la-Neuve, Belgium
| | - Elie Bou-Zeid
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
8
|
Vasudevan M, Natarajan N, Selvi SM, Ravikumar K, Rajendran AD, Bagavathi AB. Correlating the trends of COVID-19 spread and air quality during lockdowns in Tier-I and Tier-II cities of India-lessons learnt and futuristic strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86126-86155. [PMID: 34545523 PMCID: PMC8452450 DOI: 10.1007/s11356-021-16028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/14/2021] [Indexed: 05/12/2023]
Abstract
The present study focuses on the impact of early imposed lockdowns and following unlocking phases on the status of air quality in six Tier-I and nine Tier-II cities of India as compared to the pre-lockdown measures. Furthermore, the study highlights the possible correlation of air quality index (AQI) with the initial trend of COVID-19 issues including the vaccination cases. Based on the statistical data analysis, we observed that the long-term averages for representing the short-term pre-lockdown conditions can impose a healing effect to the observed anomalies in air pollution data. However, the reduction in air pollution during the imposed lockdown series was only a phenomenal consequence, and the trends started reversing during the later phases of partial unlocking, where the correlation showed reversing trends. Being a yearly averaged parameter, the marginal reductions in the exceedance factor (EF) alone could not dictate air quality compared to the AQI. As there is incoherent variability in the pollutant distributions among the cities during various phases of the study, the trend analysis served as a preferable criterion to choose the preferred sources of variations. Based on the results, the correlation analysis revealed that air quality expressed in terms of AQI can act as an important precursor to estimate the critical phase of COVID-19 spread and the effectiveness of various control measures taken during each phase. Based on our proposed ranking, Kolkata and Patna are ranked first in the Tier-I and Tier-II cities respectively according to their responsiveness to the various institutionalized restrictions in terms of air quality parameters.
Collapse
Affiliation(s)
- Mangottiri Vasudevan
- Department of Civil Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu, 638401, India
| | - Narayanan Natarajan
- Department of Civil Engineering, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamil Nadu, 642003, India.
| | - Sugashini Masillamani Selvi
- Department of Civil Engineering, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamil Nadu, 642003, India
| | - Kesavan Ravikumar
- Department of Civil Engineering, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamil Nadu, 642003, India
| | - Arun Dharshini Rajendran
- Department of Civil Engineering, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamil Nadu, 642003, India
| | - Anushya Banu Bagavathi
- Department of Civil Engineering, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamil Nadu, 642003, India
| |
Collapse
|
9
|
Asif M, Mahajan P. Impact of COVID-19 lockdown and meteorology on the air quality of Srinagar city: A temperate climatic region in Kashmir Himalayas. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 4:100025. [PMID: 37520075 PMCID: PMC9474402 DOI: 10.1016/j.heha.2022.100025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
The deadly transmission of the coronavirus forced all countries to implement lockdowns to restrict the transmission of this highly infectious disease. As a result of these lockdowns and restrictions, many urban centers have seen a positive impact on air quality with a significant reduction in air pollution. Therefore, in this study, the impact of COVID-19 lockdown vis-a-vis meteorological parameters on the ambient air quality of Srinagar city was examined. In this regard, we have evaluated the temporal variation of six different key air pollutants (PM10, PM2.5, SO2, NO2, O3, and NH3) along with meteorological parameters (relative humidity, rainfall, temperature, wind speed, and wind direction). The duration of the study was divided into three periods: Before Lockdown(BLD), Lockdown (LD), and Partial Lockdown(PLD). Daily average data for all the parameters was accessed from one of the real-time continuous monitoring stations of the central pollution control board (CPCB) at Rajbagh Srinagar. Some air pollutants have decreased, according to the results, while others have increased. The air quality index (AQI) decreases overall by 6.15 percent compared to before lockdown, and it never exceeds the "moderate" category. The AQI was in the following order for both lockdown and pre-lockdown periods: satisfactory > moderate > good. However, for partial lockdown, it was moderate > satisfactory > good. It was observed that the maximum decrease was seen in the concentration of NO2, NH3 with 75.11% and 69.18%. A modest decrease was observed in PM10 at 3.8%. While SO2 and O3 had an upward trend of 85.82% and 48.74%, The NO2 to SO2 ratio reveals that the emissions of NO2 have substantially decreased due to the complete restriction of transport systems. From principal component analysis for all three study periods, PM10 and PM2.5 were combined into a single component, inferring their shared behavior and source of origin. SO2 and O3 demonstrated identical behavior during the lockdown and partial lockdown periods of study. According to the findings of the study, it is beneficial for the government, environmentalists, and policymakers to impose rigorous lockdown measures, particularly during extreme air pollution events, in order to reduce the damage caused by automotive and industrial emissions.
Collapse
Affiliation(s)
- Mohammad Asif
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Pranav Mahajan
- Punjab School of Economics Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
10
|
Krishankumar R, Ecer F. Selection of IoT service provider for sustainable transport using q-rung orthopair fuzzy CRADIS and unknown weights. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Tyagi B, Vissa NK, Ghude SD. Evolution of Pollution Levels from COVID-19 Lockdown to Post-Lockdown over India. TOXICS 2022; 10:653. [PMID: 36355944 PMCID: PMC9693412 DOI: 10.3390/toxics10110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The spread of the COVID-19 pandemic forced the administration to lock down in many countries globally to stop the spread. As the lockdown phase had only the emergency use of transportation and most of the industries were shut down, there was an apparent reduction in pollution. With the end of the lockdown period, pollution is returning to its regular emission in most places. Though the background was abnormally low in emissions (during the lockdown phase) and the reduced pollution changed the radiation balance in the northern hemispheric summer period, a modified pollution pattern is possible during the unlock phases of 2020. The present study analysed the unlock 1 and 2 stages (June-July) of the COVID-19 lockdown over India. The rainfall, surface temperature and cloud cover anomalies of 2020 for understanding the differences in pollutants variation were also analysed. The unlock phases show remarkable differences in trends and mean variations of pollutants over the Indian region compared to climatological variations. The results indicated changing high-emission regions over India to climatological variations and identified an AOD dipole with future emissions over India.
Collapse
Affiliation(s)
- Bhishma Tyagi
- Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Naresh Krishna Vissa
- Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Sachin D. Ghude
- Indian Institute of Tropical Meteorology Pune, Pune 411008, India
| |
Collapse
|
12
|
Hassan MA, Mehmood T, Lodhi E, Bilal M, Dar AA, Liu J. Lockdown Amid COVID-19 Ascendancy over Ambient Particulate Matter Pollution Anomaly. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13540. [PMID: 36294120 PMCID: PMC9603700 DOI: 10.3390/ijerph192013540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Air is a diverse mixture of gaseous and suspended solid particles. Several new substances are being added to the air daily, polluting it and causing human health effects. Particulate matter (PM) is the primary health concern among these air toxins. The World Health Organization (WHO) addressed the fact that particulate pollution affects human health more severely than other air pollutants. The spread of air pollution and viruses, two of our millennium's most serious concerns, have been linked closely. Coronavirus disease 2019 (COVID-19) can spread through the air, and PM could act as a host to spread the virus beyond those in close contact. Studies on COVID-19 cover diverse environmental segments and become complicated with time. As PM pollution is related to everyday life, an essential awareness regarding PM-impacted COVID-19 among the masses is required, which can help researchers understand the various features of ambient particulate pollution, particularly in the era of COVID-19. Given this, the present work provides an overview of the recent developments in COVID-19 research linked to ambient particulate studies. This review summarizes the effect of the lockdown on the characteristics of ambient particulate matter pollution, the transmission mechanism of COVID-19, and the combined health repercussions of PM pollution. In addition to a comprehensive evaluation of the implementation of the lockdown, its rationales-based on topographic and socioeconomic dynamics-are also discussed in detail. The current review is expected to encourage and motivate academics to concentrate on improving air quality management and COVID-19 control.
Collapse
Affiliation(s)
- Muhammad Azher Hassan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou 570228, China
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, D-04318 Leipzig, Germany
| | - Ehtisham Lodhi
- The SKL for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Muhammad Bilal
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Afzal Ahmed Dar
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710000, China
| | - Junjie Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Biswas T, Pal SC, Saha A. Strict lockdown measures reduced PM 2.5 concentrations during the COVID-19 pandemic in Kolkata, India. SUSTAINABLE WATER RESOURCES MANAGEMENT 2022; 8:180. [PMID: 36278114 PMCID: PMC9576136 DOI: 10.1007/s40899-022-00763-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 10/01/2022] [Indexed: 05/28/2023]
Abstract
The COVID-19 situation is a critical state throughout the world that most countries have been forced to implement partial to total lockdown to control the COVID-19 disease outbreak. And displays the natural power to rejuvenate herself without the interference of human beings. So, the top-level emergency response including full quarantine actions are significant measures against the COVID-19 and resulted in a notable reduction in PM2.5 in the atmosphere. India was severely attacked by COVID-19, and as a result, the Government of India has imposed a nationwide lockdown from 24th March (2020) to 30th May (2020) in different phases. The COVID-19 outbreak and lockdown had a significant negative impact on India's socioeconomic structure but had a positive impact on environmental sustainability in terms of improved air quality due to the 68 days of the shutdown of India's industrial, commercial, construction, and transportation systems. The current study looked at the spatio-temporal changes in PM2.5 concentrations at different air quality monitoring stations (AQMS) in Kolkata during the COVID-19 period. The study revealed that the average concentration of PM2.5 (µg/m3) was slightly high (139.82) in the pre-lockdown period which was rapidly reduced to 37.77 (72.99% reduction) during the lockdown period and it was further increased (137.11) in post-lockdown period. The study also shows that the average concentration of PM2.5 was 66.83 in 2018, which slightly increased to 70.43 (5.39%) in 2019 and dramatically decreased to 37.77 (46.37%) in the year 2020 due to the COVID-19 outbreak and lockdown. The study clearly shows that air quality improves during lockdown periods in Kolkata, but it is not a permanent solution rather than temporary. Therefore, it is necessary to make the proper policies and strategies by policymakers and government authorities, and environmental scientists to maintain such good air quality by controlling several measures of air pollutants.
Collapse
Affiliation(s)
- Tanmoy Biswas
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104 India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104 India
| | - Asish Saha
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104 India
| |
Collapse
|
14
|
Singh J, Payra S, Mishra MK, Verma S. An analysis of particulate pollution using urban aerosol pollution island intensity over Delhi, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:874. [PMID: 36227379 PMCID: PMC9557043 DOI: 10.1007/s10661-022-10573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
The accent of the present study is determination of Urban Aerosol Pollution Island (UAPI) intensity and spatial variability in particulate matter concentration (PM10 and PM2.5) over Delhi. For analysis, the hourly concentration dataset of PM2.5 and PM10 from January 2019 to December 2020 was obtained from ten air quality monitoring stations of Delhi. Additionally, UAPI Index has been calculated to assess the intensity of particulate pollution. The daily, monthly, and annual variations in the trends of PM10, PM2.5, and UAPI index along with related meteorological parameters have been analyzed. Particulate pollution peaked majorly during two seasons, i.e., summer and winter. The highest concentration of PM10 was observed to be 426.77 µg/m3 while that of PM2.5 was observed to be 301.91 µg/m3 in January 2019 for traffic-affected regions. During winters, higher PM2.5 concentration was observed which can be ascribed to increased local emissions and enhanced secondary particle formations. While the increase in PM10 concentrations led to an increment in pollution episodes during summers over most of the sites in Delhi. The UAPI index was found to be declining in 2020 over traffic affected regions (77.92 and 27.22 for 2019 and 2020, respectively) as well as in the background regions (64.91 and 19.80 for 2019 and 2020, respectively) of Delhi. Low traffic intensity and reduced pollutant emission could have been responsible for the reduction of UAPI intensity in the year 2020. The result indicates that lockdown implemented to control the COVID-19 outbreak led to an unexpected decrease in the PM10 pollution over Delhi.
Collapse
Affiliation(s)
- Janhavi Singh
- Department of Environment and Sustainable Development, Banaras Hindu University, Uttar Pradesh, Varanasi, 221105, India
| | - Swagata Payra
- Department of Remote Sensing, Birla Institute of Technology Mesra, Ranchi - 835215, Jharkhand, India
| | - Manoj K Mishra
- Space Application Centre, Indian Satellite Research Organisation (ISRO), Ahmedabad, India
| | - Sunita Verma
- Department of Environment and Sustainable Development, Banaras Hindu University, Uttar Pradesh, Varanasi, 221105, India.
- DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, Uttar Pradesh, Varanasi, India.
| |
Collapse
|
15
|
Bari MW, Saleem S, Bashir M, Ahmad B. Impact of ambient air pollution on outdoor employees’ performance: Mediating role of anxiety. Front Psychol 2022; 13:926534. [PMID: 36248467 PMCID: PMC9554460 DOI: 10.3389/fpsyg.2022.926534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
This paper aims to examine the direct and indirect impact of ambient air pollution (AAP) on employees’ performance. This study has used cross sectional survey design to collect the data from the outdoor employees of the pharmaceutical industry of Pakistan. The data were collected in time lags from 299. Partial least squares- structural equation modeling (PLS-SEM) approach was applied to analyze the data. The results show that AAP has a significant negative impact on the employees’ performance, and anxiety partially mediates the association between AAP and employees’ performance. This study reveals that AAP brings anxiety among outdoor employees, which in turn decreases their working performance. The implications, limitations, and future research directions are presented in the last section of this study.
Collapse
Affiliation(s)
| | - Shaham Saleem
- School of Management and Economics, Beijing Institute of Technology, Beijing, China
| | - Mohsin Bashir
- Lyallpur Business School, Government College University, Faisalabad, Pakistan
| | - Bashir Ahmad
- Department of Public Administration, Government College University, Faisalabad, Pakistan
- *Correspondence: Bashir Ahmad,
| |
Collapse
|
16
|
Ye F, Rupakheti D, Huang L, T N, Kumar Mk S, Li L, Kt V, Hu J. Integrated process analysis retrieval of changes in ground-level ozone and fine particulate matter during the COVID-19 outbreak in the coastal city of Kannur, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119468. [PMID: 35588959 PMCID: PMC9109815 DOI: 10.1016/j.envpol.2022.119468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The Community Multi-Scale Air Quality (CMAQ) model was applied to evaluate the air quality in the coastal city of Kannur, India, during the 2020 COVID-19 lockdown. From the Pre1 (March 1-24, 2020) period to the Lock (March 25-April 19, 2020) and Tri (April 20-May 9, 2020) periods, the Kerala state government gradually imposed a strict lockdown policy. Both the simulations and observations showed a decline in the PM2.5 concentrations and an enhancement in the O3 concentrations during the Lock and Tri periods compared with that in the Pre1 period. Integrated process rate (IPR) analysis was employed to isolate the contributions of the individual atmospheric processes. The results revealed that the vertical transport from the upper layers dominated the surface O3 formation, comprising 89.4%, 83.1%, and 88.9% of the O3 sources during the Pre1, Lock, and Tri periods, respectively. Photochemistry contributed negatively to the O3 concentrations at the surface layer. Compared with the Pre1 period, the O3 enhancement during the Lock period was primarily attributable to the lower negative contribution of photochemistry and the lower O3 removal rate by horizontal transport. During the Tri period, a slower consumption of O3 by gas-phase chemistry and a stronger vertical import from the upper layers to the surface accounted for the increase in O3. Emission and aerosol processes constituted the major positive contributions to the net surface PM2.5, accounting for a total of 48.7%, 38.4%, and 42.5% of PM2.5 sources during the Pre1, Lock, and Tri periods, respectively. The decreases in the PM2.5 concentrations during the Lock and Tri periods were primarily explained by the weaker PM2.5 production from emission and aerosol processes. The increased vertical transport rate of PM2.5 from the surface layer to the upper layers was also a reason for the decrease in the PM2.5 during the Lock periods.
Collapse
Affiliation(s)
- Fei Ye
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Dipesh Rupakheti
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Lin Huang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Nishanth T
- Department of Physics, Sree Krishna College Guruvayur, Kerala, 680102, India
| | - Satheesh Kumar Mk
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Lin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Valsaraj Kt
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
17
|
Uday U, Bethineedi LD, Hasanain M, Ghazi BK, Nadeem A, Patel P, Khalid Z. Effect of COVID-19 on air pollution related illnesses in India. Ann Med Surg (Lond) 2022; 78:103871. [PMID: 35637884 PMCID: PMC9134794 DOI: 10.1016/j.amsu.2022.103871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
Ambient air pollution level not only causes respiratory diseases but also cardiovascular diseases, besides, increased visits to the emergency department for asthma, chronic obstructive pulmonary disease (COPD), bronchitis, allergic rhinitis, attention deficit hyperactivity disorder (ADHD) in children and premature deaths in infants. The occurrence of Coronavirus-19 (COVID-19) pandemic is both, a boon and bane. Despite the deplorable situation aroused by the pandemic, strict lockdown measures implemented to curb the drastic spread of the disease, also culminated into astonishing outcomes that were not prioritized. This article illustrates the effects of the ongoing pandemic on air pollution and provides recommendations aimed at limiting it.
Collapse
Key Words
- ADHD, attention deficit hyperactivity disorder
- AQI, air quality index
- Air pollution
- Air quality index (AQI)
- CO2, carbon dioxide
- COPD, chronic obstructive pulmonary disease
- COVID-19, coronavirus-19
- Cardiovascular diseases
- N95, non-oil 95
- NCAP, national clean air programme
- NH3, ammonia
- NO2, nitrogen dioxide
- O3, ozone
- Occupational diseases,particulate matter (PM)
- PM, particulate matter
- PPE, personal protective equipment
- Respiratory diseases
- SLDBI, state level disease burden initiative
- UNEP, united nations environment programme
- USD, United States dollar
- WHO, world health organization
- μg/m³, micrograms per cubic metre
Collapse
Affiliation(s)
- Utkarsha Uday
- West Bengal University of Health Sciences, Kolkata, India
| | | | | | | | | | - Prashastee Patel
- Parul Institute of Medical Sciences and Research, Vadodara, India
| | - Zaira Khalid
- Karachi Medical and Dental College, Karachi, Pakistan
| |
Collapse
|
18
|
Ravindra K, Goyal A, Mor S. Influence of meteorological parameters and air pollutants on the airborne pollen of city Chandigarh, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151829. [PMID: 34813801 DOI: 10.1016/j.scitotenv.2021.151829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Pollen, climatic variables and air pollutants coexist in nature with the potential to interact with one another and play a crucial role in increasing allergic diseases. The current study evaluates the influence of meteorological parameters and air pollutants on the airborne pollen in an urban city, Chandigarh, situated in the Indo-Gangetic Plains. Airborne pollen monitoring was done following Spanish Aerobiological Network guidelines and dynamics of daily total pollen and six most abundant taxa were studied from June 2018 to June 2020. Among meteorological parameters, temperature and wind were the most correlated and influential parameters to airborne pollen concentration. Annual Pollen Integral (APIn) of Cannabis sativa (r = 0.52), Parthenium hysterophorus (r = 0.27), Poaceae (r = 0.32) and total pollen concentration (r = 0.30) showed a statistically significant positive correlation with temperature. In contrast, precipitation and relative humidity negatively correlated with APIn of total pollen concentration, Eucalyptus sp. and Poaceae except for Parthenium hysterophorus and Celtis occidentalis. Similar results were found with Seasonal Pollen Integral (SPIn) of total pollen concentration, six major taxa and meteorological variables. Spearman correlation performed for NOx showed a significant positive correlation among APIn and SPIn of Celtis occidentalis and insignificant among APIn and SPIn of Eucalyptus sp. and Morus alba. In contrast, except for Eucalyptus sp., PM10 and PM2.5 were negatively correlated among APIn and SPIn of total pollen concentration and other major taxa. Spearman's correlation of APIn and SPIn for each pollen taxon, meteorological parameters and air pollutants suggests that each taxon has a different pattern in response to all parameters. The study findings suggest that pollen response must be examined at the taxon level, not the assemblage level, having long time-series data. This will help to compute future scenarios of changing environmental factors and comprehend the relationships and trends among meteorology, air pollutants and aerobiology.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| | - Akshi Goyal
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| |
Collapse
|
19
|
Shanableh A, Al-Ruzouq R, Hamad K, Gibril MBA, Khalil MA, Khalifa I, El Traboulsi Y, Pradhan B, Jena R, Alani S, Alhosani M, Stietiya MH, Al Bardan M, Al-Mansoori S. Effects of the COVID-19 lockdown and recovery on People's mobility and air quality in the United Arab Emirates using satellite and ground observations. REMOTE SENSING APPLICATIONS : SOCIETY AND ENVIRONMENT 2022; 26:100757. [PMID: 36281297 PMCID: PMC9581513 DOI: 10.1016/j.rsase.2022.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 06/16/2023]
Abstract
The stringent COVID-19 lockdown measures in 2020 significantly impacted people's mobility and air quality worldwide. This study presents an assessment of the impacts of the lockdown and the subsequent reopening on air quality and people's mobility in the United Arab Emirates (UAE). Google's community mobility reports and UAE's government lockdown measures were used to assess the changes in the mobility patterns. Time-series and statistical analyses of various air pollutants levels (NO2, O3, SO2, PM10, and aerosol optical depth-AOD) obtained from satellite images and ground monitoring stations were used to assess air quality. The levels of pollutants during the initial lockdown (March to June 2020) and the subsequent gradual reopening in 2020 and 2021 were compared with their average levels during 2015-2019. During the lockdown, people's mobility in the workplace, parks, shops and pharmacies, transit stations, and retail and recreation sectors decreased by about 34%-79%. However, the mobility in the residential sector increased by up to 29%. The satellite-based data indicated significant reductions in NO2 (up to 22%), SO2 (up to 17%), and AOD (up to 40%) with small changes in O3 (up to 5%) during the lockdown. Similarly, data from the ground monitoring stations showed significant reductions in NO2 (49% - 57%) and PM10 (19% - 64%); however, the SO2 and O3 levels showed inconsistent trends. The ground and satellite-based air quality levels were positively correlated for NO2, PM10, and AOD. The data also demonstrated significant correlations between the mobility and NO2 and AOD levels during the lockdown and recovery periods. The study documents the impacts of the lockdown on people's mobility and air quality and provides useful data and analyses for researchers, planners, and policymakers relevant to managing risk, mobility, and air quality.
Collapse
Affiliation(s)
- Abdallah Shanableh
- Civil and Environmental Engineering Department, University of Sharjah, Sharjah, 27272, United Arab Emirates
- GIS & Remote Sensing Center, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Rami Al-Ruzouq
- Civil and Environmental Engineering Department, University of Sharjah, Sharjah, 27272, United Arab Emirates
- GIS & Remote Sensing Center, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Khaled Hamad
- Civil and Environmental Engineering Department, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohamed Barakat A Gibril
- GIS & Remote Sensing Center, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Mohamad Ali Khalil
- GIS & Remote Sensing Center, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Inas Khalifa
- Civil and Environmental Engineering Department, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Yahya El Traboulsi
- Civil and Environmental Engineering Department, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Biswajeet Pradhan
- Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, New South Wales, Australia
- Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Ratiranjan Jena
- GIS & Remote Sensing Center, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sama Alani
- Department of Civil Engineering, McMaster University, 1280 Main St W, Hamilton, ON, Canada, L8S 4L8
| | - Mohamad Alhosani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company-Bee'ah, Sharjah, 20248, United Arab Emirates
| | - Mohammed Hashem Stietiya
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company-Bee'ah, Sharjah, 20248, United Arab Emirates
| | - Mayyada Al Bardan
- Sharjah Electricity and Water Authority, Sharjah, 135, United Arab Emirates
| | - Saeed Al-Mansoori
- Applications Development and Analysis Section (ADAS), Mohammed Bin Rashid Space Centre (MBRSC), Dubai, 211833, United Arab Emirates
| |
Collapse
|
20
|
Rawat P, Naja M. Remote sensing study of ozone, NO 2, and CO: some contrary effects of SARS-CoV-2 lockdown over India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22515-22530. [PMID: 34792768 PMCID: PMC8598935 DOI: 10.1007/s11356-021-17441-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/05/2021] [Indexed: 05/28/2023]
Abstract
Escalating emissions of several air pollutants over South Asia could play a detrimental role in the regional and global atmosphere. Therefore, it is necessary to investigate these emissions within the boundary layer and at higher heights utilizing satellite data that are more inclusionary, where limited in situ observations are available. Here, we utilize the Infrared Atmospheric Sounding Interferometer (IASI), Ozone Monitoring Instruments (OMI), TROPOspheric Monitoring Instrument (TROPOMI), and Global Ozone Monitoring Experiment (GOME-2) hyperspectral satellite data to assess the changes in emission sources during Indian lockdown with a primary focus on the tropospheric profiles of ozone and carbon monoxide (CO). A significant reduction (> 20%) in the tropospheric ozone was seen over northern and northeast regions compared to 2018, while a dramatic increase (> 20%) compared to 2019 was seen. The subtropical dynamics mainly contributed to the increased ozone over the northern region. An analysis of the ozone production regime showed mostly NO2 limited regime over the major part of India and VOC limited regime over thermal power plants regions. Unlike in the boundary layer, where CO showed reduction (15-20%), CO profiles showed a consistent increase (as high as 31%) in the free troposphere over the majority of cities and thermal power plants. The CO total column also showed an increase (~ 20%) over central and western India and a slight decrease (5%) over northern India. Similar to CO, an increase (~ 15%) of NO2 column over the western region was observed particularly compared to 2019. However, unlike ozone and CO, reduction of tropospheric NO2 columns was seen over the major part of India, with the highest reduction over northern regions (20-52%). Furthermore, homogeneous yearly differences (> 30%) between OMI and TROPOMI NO2 observations were also seen distinctly over the remote areas. Contrary to surface-based studies, the present study shows an increase in CO, ozone (decrease), and NO2 at several locations and in the free troposphere during the lockdown.
Collapse
Affiliation(s)
- Prajjwal Rawat
- Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, 263001, India
| | - Manish Naja
- Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, 263001, India.
| |
Collapse
|
21
|
Yang M, Chen L, Msigwa G, Tang KHD, Yap PS. Implications of COVID-19 on global environmental pollution and carbon emissions with strategies for sustainability in the COVID-19 era. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151657. [PMID: 34793787 PMCID: PMC8592643 DOI: 10.1016/j.scitotenv.2021.151657] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 05/19/2023]
Abstract
The impacts of COVID-19 on global environmental pollution since its onset in December 2019 require special attention. The rapid spread of COVID-19 globally has led countries to lock down cities, restrict traffic travel and impose strict safety measures, all of which have implications on the environment. This review aims to systematically and comprehensively present and analyze the positive and negative impacts of COVID-19 on global environmental pollution and carbon emissions. It also aims to propose strategies to prolong the beneficial, while minimize the adverse environmental impacts of COVID-19. It systematically and comprehensively reviewed more than 100 peer-reviewed papers and publications related to the impacts of COVID-19 on air, water and soil pollution, carbon emissions as well as the sustainable strategies forward. It revealed that PM2.5, PM10, NO2, and CO levels reduced in most regions globally but SO2 and O3 levels increased or did not show significant changes. Surface water, coastal water and groundwater quality improved globally during COVID-19 lockdown except few reservoirs and coastal areas. Soil contamination worsened mainly due to waste from the use of personal protective equipment particularly masks and the packaging, besides household waste. Carbon emissions were reduced primarily due to travel restrictions and less usage of utilities though emissions from certain ships did not change significantly to maintain supply of the essentials. Sustainable strategies post-COVID-19 include the development and adoption of nanomaterial adsorption and microbial remediation technologies, integrated waste management measures, "sterilization wave" technology and energy-efficient technologies. This review provides important insight and novel coverage of the environmental implications of COVID-19 in more than 25 countries across different global regions to permit formulation of specific pollution control and sustainability strategies in the COVID-19 and post-COVID-19 eras for better environmental quality and human health.
Collapse
Affiliation(s)
- Mingyu Yang
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lin Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Goodluck Msigwa
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Kuok Ho Daniel Tang
- Environmental Science Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
22
|
Silva ACT, Branco PTBS, Sousa SIV. Impact of COVID-19 Pandemic on Air Quality: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1950. [PMID: 35206139 PMCID: PMC8871899 DOI: 10.3390/ijerph19041950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023]
Abstract
With the emergence of the COVID-19 pandemic, several governments imposed severe restrictions on socio-economic activities, putting most of the world population into a general lockdown in March 2020. Although scattered, studies on this topic worldwide have rapidly emerged in the literature. Hence, this systematic review aimed to identify and discuss the scientifically validated literature that evaluated the impact of the COVID-19 pandemic and associated restrictions on air quality. Thus, a total of 114 studies that quantified the impact of the COVID-19 pandemic on air quality through monitoring were selected from three databases. The most evaluated countries were India and China; all the studies intended to evaluate the impact of the pandemic on air quality, mainly concerning PM10, PM2.5, NO2, O3, CO, and SO2. Most of them focused on the 1st lockdown, comparing with the pre- and post-lockdown periods and usually in urban areas. Many studies conducted a descriptive analysis, while others complemented it with more advanced statistical analysis. Although using different methodologies, some studies reported a temporary air quality improvement during the lockdown. More studies are still needed, comparing different lockdown and lifting periods and, in other areas, for a definition of better-targeted policies to reduce air pollution.
Collapse
Affiliation(s)
- Ana Catarina T. Silva
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.C.T.S.); (P.T.B.S.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Pedro T. B. S. Branco
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.C.T.S.); (P.T.B.S.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia I. V. Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.C.T.S.); (P.T.B.S.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
23
|
Ravindra K, Singh T, Vardhan S, Shrivastava A, Singh S, Kumar P, Mor S. COVID-19 pandemic: What can we learn for better air quality and human health? J Infect Public Health 2022; 15:187-198. [PMID: 34979337 PMCID: PMC8642828 DOI: 10.1016/j.jiph.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 lockdown resulted in improved air quality in many cities across the world. With the objective of what could be the new learning from the COVID-19 pandemic and subsequent lockdowns for better air quality and human health, a critical synthesis of the available evidence concerning air pollution reduction, the population at risk and natural versus anthropogenic emissions was conducted. Can the new societal norms adopted during pandemics, such as the use of face cover, awareness regarding respiratory hand hygiene, and physical distancing, help in reducing disease burden in the future? The use of masks will be more socially acceptable during the high air pollution episodes in lower and middle-income countries, which could help to reduce air pollution exposure. Although post-pandemic, some air pollution reduction strategies may be affected, such as car-pooling and the use of mass transit systems for commuting to avoid exposure to airborne infections like coronavirus. However, promoting non-motorized modes of transportation such as cycling and walking within cities as currently being enabled in Europe and other countries could overshadow such losses. This demand focus on increasing walkability in a town for all ages and populations, including for a differently-abled community. The study highlighted that for better health and sustainability there. is also a need to promote other measures such as work-from-home, technological infrastructure, the extension of smart cities, and the use of information technology.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Tanbir Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Shikha Vardhan
- Centre for Environmental & Occupational Health, Climate Change & Health, National Centre for Disease Control, Delhi, 110054, India
| | - Aakash Shrivastava
- Centre for Environmental & Occupational Health, Climate Change & Health, National Centre for Disease Control, Delhi, 110054, India
| | - Sujeet Singh
- Centre for Environmental & Occupational Health, Climate Change & Health, National Centre for Disease Control, Delhi, 110054, India
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
24
|
Ravindra K, Singh T, Mor S. COVID-19 pandemic and sudden rise in crop residue burning in India: issues and prospects for sustainable crop residue management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3155-3161. [PMID: 34822094 PMCID: PMC8614071 DOI: 10.1007/s11356-021-17550-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The seasonal burning of crop residue significantly affects the environment, leading to poor air quality over Indo-Gangetic Plain (IGP) in India. Hence, there have been significant efforts to minimize crop residue burning through policy, innovations, and awareness measures. However, an abrupt increase in paddy residue burning was observed over IGP during 2020. Hence, the study explores the factors leading to this sharp rise. The business as usual trends analysis revealed that paddy crop residue burning activities increased significantly (60%) in 2020 compared to the previous year. The massive increase in crop residue burning consequently seems to be linked with the COVID-19 pandemic, which affected the farmer's income, including the poor compliance by the regulatory authorities. The study also highlights the issues and prospects for sustainable crop residue management and explores the solutions to minimize crop residue burning. There are few crops in India that have guaranteed minimum sale price and are also subsidized. These provisions encourage farmers to grow those particular crops, resulting in the generation of large amounts of crop residue from these specific crops. There have been several efforts by the Indian government, including based on recent court intervention. Still, there is no respite from burning activities and the occurrence of Delhi winter smog every year. Hence, the study emphasizes a need to adopt integrated approaches having in situ eco-friendly solutions, which enhances the farmer's income and focuses on employability, capacity building, awareness generation, and in situ economically viable solutions.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Tanbir Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
- Research Institute for Humanity and Nature (RIHN), Kyoto, 6038047, Japan
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
25
|
The effects of air pollution, meteorological parameters, and climate change on COVID-19 comorbidity and health disparities: A systematic review. ENVIRONMENTAL CHEMISTRY AND ECOTOXICOLOGY 2022; 4. [PMCID: PMC9568272 DOI: 10.1016/j.enceco.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Air pollutants, especially particulate matter, and other meteorological factors serve as important carriers of infectious microbes and play a critical role in the spread of disease. However, there remains uncertainty about the relationship among particulate matter, other air pollutants, meteorological conditions and climate change and the spread of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), hereafter referred to as COVID-19. A systematic review was conducted using PRISMA guidelines to identify the relationship between air quality, meteorological conditions and climate change, and COVID-19 risk and outcomes, host related factors, co-morbidities and disparities. Out of a total of 170,296 scientific publications screened, 63 studies were identified that focused on the relationship between air pollutants and COVID-19. Additionally, the contribution of host related-factors, co-morbidities, and health disparities was discussed. This review found a preponderance of evidence of a positive relationship between PM2.5, other air pollutants, and meteorological conditions and climate change on COVID-19 risk and outcomes. The effects of PM2.5, air pollutants, and meteorological conditions on COVID-19 mortalities were most commonly experienced by socially disadvantaged and vulnerable populations. Results however, were not entirely consistent, and varied by geographic region and study. Opportunities for using data to guide local response to COVID-19 are identified.
Collapse
|
26
|
Mahato S, Pal S. Revisiting air quality during lockdown persuaded by second surge of COVID-19 of megacity Delhi, India. URBAN CLIMATE 2022; 41:101082. [PMID: 35024327 PMCID: PMC8733282 DOI: 10.1016/j.uclim.2021.101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 05/13/2023]
Abstract
Is the impact of city-scale lockdown in response to 2nd surge of COVID-19, behavioural changes in people owing to yearlong cohabitation with COVID-19, and partial vaccination on air quality different from the impact of nationwide lockdown during COVID-19's 1st surge in March 2020? Targeting this objective, the present work has selected four phases pre-lockdown and lockdown of 1st and 2nd cycles of lockdown taking average air quality index (NAQI) from Central Pollution Control Board (CPCB). The results clearly show that both the nationwide lockdown and the city-scale restriction are responsible for improving air quality in India's megacity Delhi, but the rate of improvement was higher (39%) during the first cycle of lockdown (nationwide) than during the second cycle of lockdown (city-scale). During city-scale lockdown, the disparity in NAQI between the core and the periphery is obvious. Due to the effect of economic activities surrounding Delhi, around 10 km of the city's interior has experienced high NAQI. The reason for the lower NAQI improvement during the second lockdown cycle is likely due to relief from initial fear following a year of cohabitation with COVID-19, partial vaccination, and partial relaxation in industrial sectors to avoid the economic hardships experienced during the first lockdown cycle.
Collapse
Affiliation(s)
- Susanta Mahato
- Special Centre for Disaster Research, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Swades Pal
- Department of Geography, University of Gour Banga, West Bengal, India
| |
Collapse
|
27
|
Sarmadi M, Rahimi S, Rezaei M, Sanaei D, Dianatinasab M. Air quality index variation before and after the onset of COVID-19 pandemic: a comprehensive study on 87 capital, industrial and polluted cities of the world. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:134. [PMID: 34900511 PMCID: PMC8645297 DOI: 10.1186/s12302-021-00575-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/20/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) pandemic provided an opportunity for the environment to reduce ambient pollution despite the economic, social and health disruption to the world. The purpose of this study was to investigate the changes in the air quality indexes (AQI) in industrial, densely populated and capital cities in different countries of the world before and after 2020. In this ecological study, we used AQI obtained from the free available databases such as the World Air Quality Index (WAQI). Bivariate correlation analysis was used to explore the correlations between meteorological and AQI variables. Mean differences (standard deviation: SD) of AQI parameters of different years were tested using paired-sample t-test or Wilcoxon signed-rank test as appropriate. Multivariable linear regression analysis was conducted to recognize meteorological variables affecting the AQI parameters. RESULTS AQI-PM2.5, AQI-PM10 and AQI-NO2 changes were significantly higher before and after 2020, simultaneously with COVID-19 restrictions in different cities of the world. The overall changes of AQI-PM2.5, AQI-PM10 and AQI-NO2 in 2020 were - 7.36%, - 17.52% and - 20.54% compared to 2019. On the other hand, these results became reversed in 2021 (+ 4.25%, + 9.08% and + 7.48%). In general, the temperature and relative humidity were inversely correlated with AQI-PM2.5, AQI-PM10 and AQI-NO2. Also, after adjusting for other meteorological factors, the relative humidity was inversely associated with AQI-PM2.5, AQI-PM10 and AQI-NO2 (β = - 1.55, β = - 0.88 and β = - 0.10, P < 0.01, respectively). CONCLUSIONS The results indicated that air quality generally improved for all pollutants except carbon monoxide and ozone in 2020; however, changes in 2021 have been reversed, which may be due to the reduction of some countries' restrictions. Although this quality improvement was temporary, it is an important result for planning to control environmental pollutants.
Collapse
Affiliation(s)
- Mohammad Sarmadi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sajjad Rahimi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mina Rezaei
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Daryoush Sanaei
- Department of Environmental Health Engineering, Faculty of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mostafa Dianatinasab
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
28
|
Singh T, Ravindra K, Beig G, Mor S. Influence of agricultural activities on atmospheric pollution during post-monsoon harvesting seasons at a rural location of Indo-Gangetic Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148903. [PMID: 34274681 DOI: 10.1016/j.scitotenv.2021.148903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/23/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The emissions from agricultural activities significantly impact the air quality at local (rural) and regional scales. The study monitored the near real-time concentrations of emission from agrarian activities, i.e., particulate matter (PM10, PM2.5, PM1), traces gases and VOCs, along with meteorological parameters in a rural area of Indo-Gangetic Plains (IGP). As different agricultural activities take place simultaneously in the region, sampling period was divided into three phases based on regional agricultural activities as HB (harvesting-burning) period, BTS (burning-tillage-sowing) period and PFS (pesticide-fertilizer spray) period. The highest mean concentration (± standard deviation) of particulate matter, i.e., PM10, PM2.5, PM1 was observed during HB period as 151.0 ± 52.3, 94.7 ± 32.9 and 41.0 ± 16.3 μgm-3 followed by PFS as 121.7 ± 49.1, 87.8 ± 35.5 and 39.7 ± 15.7 μgm-3 and BTS period as 92.5 ± 38.8, 63.5 ± 28.4, 26.6 ± 10.9 μgm-3 respectively. The mean concentration of NO (8.4 ± 3.4 ppb), SO2 (5.8 ± 1.2 ppb), CO (0.9 ± 0.3 ppm), O3 (12.5 ± 3.3 ppb) was also highest during harvesting-burning period. In the burning-tillage-sowing period, the mean concentration of NO2 (31.0 ± 2.9 ppb), benzene (2.8 ± 0.6 μgm-3) and o-xylene (2.1 ± 0.3 μgm-3) were highest. The data of crop residue burning fires showed that during HB period, around 34,683 active fires were there in the region (state of Punjab), whereas, in studied district, the number of fire counts were 635. During the HB period, around 70% of the air masses were originated within a 500 km area, whereas during the BTS and PFS period, 75% and 86% of air masses were originated from 500 km region, respectively. The ratio of PM2.5/PM10 during study period ranged from 0.63 to 0.72 and was observed highest during PFS period. The current study investigated the influence of agricultural activities on air quality during post-monsoon season in a rural area of Indo-Gangetic Plains to understand the impact of these activities on air quality in the region and plan mitigation strategies.
Collapse
Affiliation(s)
- Tanbir Singh
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Gufran Beig
- Indian Institute of Tropical Meteorology, Pashan, Pune, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
29
|
Robin RS, Purvaja R, Ganguly D, Hariharan G, Paneerselvam A, Sundari RT, Karthik R, Neethu CS, Saravanakumar C, Semanti P, Prasad MHK, Mugilarasan M, Rohan S, Arumugam K, Samuel VD, Ramesh R. COVID-19 restrictions and their influences on ambient air, surface water and plastic waste in a coastal megacity, Chennai, India. MARINE POLLUTION BULLETIN 2021; 171:112739. [PMID: 34304059 PMCID: PMC8458696 DOI: 10.1016/j.marpolbul.2021.112739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 05/06/2023]
Abstract
Anthropogenic activities experienced a pause due to the nationwide lockdown, imposed to contain the rapid spread of COVID-19 in the third week of March 2020. The impacts of suspension of industrial activities, vehicular transport and other businesses for three months (25 March-30 June) on the environmental settings of Chennai, a coastal megacity was assessed. A significant reduction in the key urban air pollutants [PM2.5 (66.5%), PM10 (39.5%), NO2 (94.1%), CO (29%), O3 (45.3%)] was recorded as an immediate consequence of the reduced anthropogenic activities. Comparison of water quality of an urban river Adyar, between pre-lockdown and lockdown, showed a substantial drop in the dissolved inorganic N (47%) and suspended particulate matter (41%) during the latter period. During the pandemic, biomedical wastes in India showed an overall surge of 17%, which were predominantly plastic. FTIR-ATR analysis confirmed the polymers such as polypropylene (25.4%) and polyester (15.4%) in the personal protective equipment.
Collapse
Affiliation(s)
- R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - D Ganguly
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - G Hariharan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - A Paneerselvam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - R T Sundari
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - R Karthik
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - C S Neethu
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - C Saravanakumar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - P Semanti
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - M H K Prasad
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - S Rohan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - K Arumugam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - V D Samuel
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India.
| |
Collapse
|
30
|
Arunkumar M, Dhanakumar S. Influence of meteorology, mobility, air mass transport and biomass burning on PM 2.5 of three north Indian cities: phase-wise analysis of the COVID-19 lockdown. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:618. [PMID: 34476627 PMCID: PMC8412385 DOI: 10.1007/s10661-021-09400-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Recent studies concluded that air quality has improved due to the enforcement of lockdown in the wake of COVID-19. However, they mostly concentrated on the changes during the lockdown period, and the studies considering the consequences of de-escalation of lockdown are inadequate. Therefore, we investigated the changes in fine particulate matter (PM2.5) during the pre-lockdown, strict lockdown, unlocking, and post-lockdown scenarios. In addition, we assessed the influence of meteorology, mobility, air mass transport, and biomass burning on PM2.5 using Google's mobility data, back trajectory model, and satellite-based fire incident data. Average PM2.5 concentrations in Ghaziabad, Noida, and Faridabad decreased by 60.70%, 63.27%, and 60.40%, respectively, during the lockdown. When compared with the preceding year (2019), the reductions during the shutdown period (25 March-31 May) were within the range of 36.34-44.55%. However, considering the entire year, this reduction in PM2.5 is momentary, and a steady increase in traffic density and industrial operations within cities during post-lockdown reflects a potent recovery of aerosol level, during which the average mass of PM2.5 three- to four-folds higher than the lockdown period. Back trajectories and fire activity results showed that biomass burning in the nearby states (Haryana and Punjab) influence aerosol load. We conclude that a partial lockdown in the event of a sudden surge in pollution would be a beneficial approach. However, reducing fossil fuel consumption and switching to more environmentally friendly energy sources, developing green transport networks, and circumventing biomass burning are efficient ways to improve air quality in the long term.
Collapse
Affiliation(s)
- M. Arunkumar
- Department of Environmental Science, PSG College of Arts and Science, Tamil Nadu, Coimbatore, India 641014
| | - S. Dhanakumar
- Department of Environmental Science, PSG College of Arts and Science, Tamil Nadu, Coimbatore, India 641014
| |
Collapse
|
31
|
Sharma GD, Tiwari AK, Jain M, Yadav A, Srivastava M. COVID-19 and environmental concerns: A rapid review. RENEWABLE & SUSTAINABLE ENERGY REVIEWS 2021; 148:111239. [PMID: 34234623 PMCID: PMC8189823 DOI: 10.1016/j.rser.2021.111239] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 has slowed global economic growth and consequently impacted the environment as well. Parallelly, the environment also influences the transmission of this novel coronavirus through various factors. Every nation deals with varied population density and size; air quality and pollutants; the nature of land and water, which significantly impact the transmission of coronavirus. The WHO (Ziaeepour et al., 2008) [1] has recommended rapid reviews to provide timely evidence to the policymakers to respond to the emergency. The present study follows a rapid review along with a brief bibliometric analysis of 328 research papers, which synthesizes the evidence regarding the environmental concerns of COVID-19. The novel contribution of this rapid review is threefold. One, we take stock of the diverse findings as regards the transmission of the novel coronavirus in different types of environments for providing conclusive directions to the ongoing debate regarding the transmission of the virus. Two, our findings provide topical insights as well as methodological guidance for future researchers in the field. Three, we inform the policymakers on the efficacy of environmental measures for controlling the spread of COVID-19.
Collapse
Affiliation(s)
- Gagan Deep Sharma
- University School of Management Studies, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi, India
| | | | - Mansi Jain
- University School of Management Studies, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi, India
| | - Anshita Yadav
- University School of Management Studies, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi, India
| | - Mrinalini Srivastava
- University School of Management Studies, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi, India
| |
Collapse
|
32
|
Maji KJ, Namdeo A, Bell M, Goodman P, Nagendra SMS, Barnes JH, De Vito L, Hayes E, Longhurst JW, Kumar R, Sharma N, Kuppili SK, Alshetty D. Unprecedented reduction in air pollution and corresponding short-term premature mortality associated with COVID-19 lockdown in Delhi, India. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:1085-1101. [PMID: 33764280 DOI: 10.1080/10962247.2021.1905104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 05/21/2023]
Abstract
Countries around the world introduced strict restrictions on movement and activities known as 'lockdowns' to restrict the spread of the novel coronavirus disease (COVID-19) from the end of 2019. A sudden improvement in air quality was observed globally as a result of these lockdowns. To provide insight into the changes in air pollution levels in response to the COVID-19 restrictions we have compared surface air quality data in Delhi during four phases of lockdown and the first phase of the restriction easing period (25 March to 30 June 2020) with data from a baseline period (2018-2019). Simultaneously, short-term exposure of PM2.5 and O3 attributed premature mortality were calculated to understand the health benefit of the change in air quality. Ground-level observations in Delhi showed that concentrations of PM10, PM2.5 and NO2 dropped substantially in 2020 during the overall study period compared with the same period in previous years, with average reductions of ~49%, ~39%, and ~39%, respectively. An overall lower reduction in O3 of ~19% was observed for Delhi. A slight increase in O3 was found in Delhi's industrial and traffic regions. The highest peak of the diurnal variation decreased substantially for all the pollutants at every phase. The decrease in PM2.5 and O3 concentrations in 2020, prevented 904 total premature deaths, a 60% improvement when compared to the figures for 2018-2019. The restrictions on human activities during the lockdown have reduced anthropogenic emissions and subsequently improved air quality and human health in one of the most polluted cities in the world.Implications: I am submitting herewith the manuscript entitled "Unprecedented Reduction in Air Pollution and Corresponding Short-term Premature Mortality Associated with COVID-19 Forced Confinement in Delhi, India" for potential publishing in your journal.The novelty of this research lies in: (1) we utilized ground-level air quality data in Delhi during four phases of lockdown and the first phase of unlocking period (25th March to 30th June) for 2020 as well as data from the baseline period (2018-2019) to provide an early insight into the changes in air pollution levels in response to the COVID-19 pandemic, (2) Chatarize the change of diurnal variation of the pollutants and (3) we assess the health risk due to PM2.5 and O3. Results from ground-level observations in Delhi showed that concentrations of PM10, PM2.5 and NO2 substantially dropped in 2020 during the overall study period compared to the similar period in previous years, with an average reduction of ~49%, ~39%, and ~39%, respectively. In the case of O3, the overall reduction was observed as ~19% in Delhi, while a slight increase was found in industrial and traffic regions. And consequently, the highest peak of the diurnal variation decreased substantially for all the pollutants. The health impact assessment of the changes in air quality indicated that 904 short-term premature deaths (~60%) were prevented due to the decline in PM2.5 and O3 concentrations in the study period. The restrictions on human activities during the lockdown have reduced the anthropogenic emissions and subsequently improved air quality and human health in one of the most polluted cities in the world.
Collapse
Affiliation(s)
- Kamal Jyoti Maji
- Air Quality Research Group, Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Anil Namdeo
- Air Quality Research Group, Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Margaret Bell
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Goodman
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - S M Shiva Nagendra
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Joanna H Barnes
- Department of Geography and Environmental Management, University of the West of England, Bristol, UK
| | - Laura De Vito
- Department of Geography and Environmental Management, University of the West of England, Bristol, UK
| | - Enda Hayes
- Department of Geography and Environmental Management, University of the West of England, Bristol, UK
| | - James W Longhurst
- Department of Geography and Environmental Management, University of the West of England, Bristol, UK
| | - Rakesh Kumar
- Centre for Strategic Urban Management, CSIR-NEERI, Nehru Marg, Nagpur, India
| | - Niraj Sharma
- Transportation Planning and Environment Division, CSIR-Central Road Research Institute (CRRI), New Delhi, India
| | - Sudheer Kumar Kuppili
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Dheeraj Alshetty
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
33
|
Das M, Das A, Sarkar R, Mandal P, Saha S, Ghosh S. Exploring short term spatio-temporal pattern of PM 2.5 and PM 10 and their relationship with meteorological parameters during COVID-19 in Delhi. URBAN CLIMATE 2021; 39:100944. [PMID: 34580626 PMCID: PMC8459164 DOI: 10.1016/j.uclim.2021.100944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 05/09/2023]
Abstract
Present study aims to examine the impact of lockdown on spatio-temporal concentration of PM2.5 and PM10 - categorized and recorded based on its levels during pre-lockdown, lockdown and unlock phases while noting the relationship of these levels with meteorological parameters (temperature, wind speed, relative humidity, rainfall, pressure, sun hour and cloud cover) in Delhi. To aid the study, a comparison was made with the last two years (2018 to 2019), covering the same periods of pre-lockdown, lockdown and unlock phases of 2020. Correlation analysis, linear regression (LR) was used to examine the impact of meteorological parameters on particulate matter (PM) concentrations in Delhi, India. The findings showed that (i) substantial decline of PM concentration in Delhi during lockdown period, (ii) there were substantial seasonal variation of particulate matter concentration in city and (iii) meteorological parameters have close associations with PM concentrations. The findings will help planners and policy makers to understand the impact of air pollutants and meteorological parameters on infectious disease and to adopt effective strategies for future.
Collapse
Affiliation(s)
- Manob Das
- Department of Geography, University of Gour Banga, Malda, West Bengal, India
| | - Arijit Das
- Department of Geography, University of Gour Banga, Malda, West Bengal, India
| | - Raju Sarkar
- Department of Civil Engineering, Delhi Technological University, Bawana Road, Delhi, India
| | - Papiya Mandal
- Delhi Zonal Centre, CSIR-National Environmental Engineering Research Institute, New Delhi, India
| | - Sunil Saha
- Department of Geography, University of Gour Banga, Malda, West Bengal, India
| | - Sasanka Ghosh
- Department of Geography, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
34
|
Bherwani H, Kumar S, Musugu K, Nair M, Gautam S, Gupta A, Ho CH, Anshul A, Kumar R. Assessment and valuation of health impacts of fine particulate matter during COVID-19 lockdown: a comprehensive study of tropical and sub tropical countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44522-44537. [PMID: 33852112 PMCID: PMC8044290 DOI: 10.1007/s11356-021-13813-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/01/2021] [Indexed: 05/10/2023]
Abstract
A novel coronavirus disease (COVID-19) continues to challenge the whole world. The disease has claimed many fatalities as it has transcended from one country to another since it was first discovered in China in late 2019. To prevent further morbidity and mortality associated with COVID-19, most of the countries initiated a countrywide lockdown. While physical distancing and lockdowns helped in curbing the spread of this novel coronavirus, it led to massive economic losses for the nations. Positive impacts have been observed due to lockdown in terms of improved air quality of the nations. In the current research, ten tropical and subtropical countries have been analysed from multiple angles, including air pollution, assessment and valuation of health impacts and economic loss of countries during COVID-19 lockdown. Countries include Brazil, India, Iran, Kenya, Malaysia, Mexico, Pakistan, Peru, Sri Lanka, and Thailand. Validated Simplified Aerosol Retrieval Algorithm (SARA) binning model is used on data collated from moderate resolution imaging spectroradiometer (MODIS) for particulate matters with a diameter of less than 2.5 μm (PM2.5) for all the countries for the month of January to May 2019 and 2020. The concentration results of PM2.5 show that air pollution has drastically reduced in 2020 post lockdown for all countries. The highest average concentration obtained by converting aerosol optical depth (AOD) for 2020 is observed for Thailand as 121.9 μg/m3 and the lowest for Mexico as 36.27 μg/m3. As air pollution is found to decrease in the April and May months of 2020 for nearly all countries, they are compared with respective previous year values for the same duration to calculate the reduced health burden due to lockdown. The present study estimates that cumulative about 100.9 Billion US$ are saved due to reduced air pollution externalities, which are about 25% of the cumulative economic loss of 435.9 Billion US$.
Collapse
Affiliation(s)
- Hemant Bherwani
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra 440020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Suman Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra 440020 India
| | - Kavya Musugu
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra 440020 India
| | - Moorthy Nair
- Asian Development Research Institute (ADRI), Patna, Bihar 800013 India
| | - Sneha Gautam
- Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114 India
| | - Ankit Gupta
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra 440020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Chang-Hoi Ho
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Avneesh Anshul
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra 440020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Rakesh Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra 440020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
35
|
Ravindra K, Goyal A, Mor S. Does airborne pollen influence COVID-19 outbreak? SUSTAINABLE CITIES AND SOCIETY 2021; 70:102887. [PMID: 33816082 PMCID: PMC7999829 DOI: 10.1016/j.scs.2021.102887] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 05/09/2023]
Abstract
The fast spread of SARS-CoV-2 presented a worldwide challenge to public health, economy, and educational system, affecting wellbeing of human society. With high transmission rates, there are increasing evidences of COVID-19 spread via bioaerosols from an infected person. The current review was conducted to examine airborne pollen impact on COVID-19 transmission and to identify the major gaps for post-pandemic research. The study used all key terms to identify revenant literature and observation were collated for the current research. Based on existing literature, there is a potential association between pollen bioaerosols and COVID-19. There are few studies focusing the impact of airborne pollen on SARS-CoV-2, which could be useful to advance future research. Allergic rhinitis and asthma patients were found to have pre-modified immune activation, which could help to provide protection against COVID-19. However, does airborne pollen acts as a potent carrier for SARS-CoV-2 transport, dispersal and its proliferation still require multidisciplinary research. Further, a clear conclusion cannot be drawn due to limited evidence and hence more research is needed to show how pollen bioaerosols could affect virus survivals. The small but growing literature review focuses on searching for every possible answer to provide additional security layers to overcome near future corona-like infectious diseases.
Collapse
Key Words
- AAAAI, American Academy of Allergy, Asthma & Immunology
- ACE-2, angiotensin-converting enzyme 2
- ARDS, acute respiratory distress syndrome
- Airborne pollen
- Allergic rhinitis
- Asthma
- Bioaerosols
- CCDC, Chinese Centre for Disease Control and Prevention
- CDC, Centers for Disease Control and Prevention
- CESM, Community Earth System Model
- CMAQ, Community Multiscale Air Quality
- COPD, chronic obstructive pulmonary diseases
- COVID-19
- ERS, European Respiratory Society
- FLI, flu-like illnesses
- GINA, Global Initiative for Asthma
- H1N1, Influenza A virus subtype H1N1
- H5N1, avian influenza virus
- IgE, Immunoglobulin E
- LDT, long-distance transport
- MERS, Middle East respiratory syndrome
- NHC, National Health Commission
- RSV, Respiratory Syncytial Virus infection
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus-2
- STaMPS, Simulator of Timing and Magnitude of Pollen Season
- Virus
- WAO, World Allergy Organisation
- WHO, World Health Organization
- WRF, Weather Research Forecasting
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Akshi Goyal
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|