1
|
de Araújo HH, Soares GDD, Dias-Pereira J, da Silva LC, de Morais Machado V. Impact of saflufenacil and glyphosate-based herbicides on the morphoanatomical and development of Enterolobium contortisiliquum (Vell.) Morong (Fabaceae): new insights into a non-target tropical tree species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61254-61269. [PMID: 39412717 DOI: 10.1007/s11356-024-35223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
The unregulated use and improper management of herbicides can cause negative effects on non-target species and promote changes in biological communities. Therefore, the current study is aimed at understanding morphoanatomical responses and effects on seedling development induced by the herbicides glyphosate and saflufenacil in Enterolobium contortisiliquum, a non-target tropical species. The plants were cultivated in a greenhouse and subjected to herbicides at doses of 0, 160, 480, and 1440 g a.e ha-1 for glyphosate, and 0, 25, 50, and 100 g a.i ha-1 for saflufenacil. We conducted visual and morphological assessments over 90 days post-application. Leaf samples were collected 12 days after the application for anatomical analysis, and we also performed a micromorphometric analysis of the leaf tissues. Biomarkers of phytotoxicity were identified in plants exposed to both herbicides, even at the lowest doses, including in leaves without visual symptoms. The main morphological alterations were the decrease in growth, stem diameter, and dry mass. Furthermore, the leaves and stems visually exhibited chlorosis and necrosis. Both herbicides triggered anatomical modifications such as significant changes (p < 0.05) in the thickness of leaf tissues, hypertrophy, cell collapse, and changes in epicuticular waxes. However, the alterations induced by glyphosate were more widespread compared to saflufenacil, encompassing alterations in the root system. We confirmed that the different mechanisms of action of each herbicide and the existence of an underground reserve system in this species are intrinsically linked to the morphological and developmental responses described. Our findings suggest that E. contortisiliquum could be a potential bioindicator species for these herbicides in the environment, even at concentrations lower than those typically recommended for field application.
Collapse
Affiliation(s)
- Hugo Humberto de Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- Centro Universitário de Patos de Minas, Patos de Minas, MG, 38702-054, Brazil
| | | | - Jaqueline Dias-Pereira
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - Luzimar Campos da Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | | |
Collapse
|
2
|
Feng X, Tao Y, Dai Z, Chu Z, Wei Y, Tao M, He Y, Chen H. Effects of transgenic modification on the bacterial communities in different niches of maize under glyphosate toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125023. [PMID: 39322111 DOI: 10.1016/j.envpol.2024.125023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Transgenic glyphosate-resistant maize has emerged as a way to expand the use of glyphosate for weed control. Studying the microbiome in the tissues and rhizosphere soil of transgenic plants is vital for understanding the glyphosate-resistant mechanism and optimizing the transgenic design of crops. In our study, the expression of a mutant cp4epsps gene in transgenic maize, which confers tolerance to glyphosate, was performed using the maize variety Xianyu 335 as the genetically modified acceptor line. This transgenic modification did not affect the initial bacterial community in the leaf, stem, or root of maize, but promoted a differential bacterial community in the rhizosphere soil. Under glyphosate application, the abundance of beneficial bacteria involved in N fixation and P solubilization in plant tissues and the rhizosphere soil of glyphosate-resistance maize were higher than those in the glyphosate-sensitive maize. In contrast, the abundance of pathogens had the opposite trend, suggesting that the enhanced health of transgenic maize prevented microbiome deterioration under glyphosate. The re-inoculation of bacterial strains isolated from glyphosate-resistance maize into the leaf and rhizosphere soil of glyphosate-sensitive maize resulted in an enhanced photosynthetic capacity in response to glyphosate, demonstrating the vital role of specific bacteria for glyphosate resistance. Our study provides important evidence of how transgenic maize tolerance to herbicides affects the bacterial communities across the maize niches under glyphosate toxicity.
Collapse
Affiliation(s)
- Xuping Feng
- The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yimin Tao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhongmin Dai
- The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhenjiang Chu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuzhen Wei
- School of Information Engineering, Huzhou University, Huzhou, 313000, China
| | - Mingzhu Tao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
3
|
de Faria GS, Carlos L, Jakelaitis A, de Freitas STF, Vicentini TA, Silva IOF, Vasconcelos Filho SC, Lourenço LL, Farnese FS, Batista MA, Vitorino LC. Hormetic Effect Caused by Sublethal Doses of Glyphosate on Toona ciliata M. Roem. PLANTS (BASEL, SWITZERLAND) 2023; 12:4163. [PMID: 38140490 PMCID: PMC10747235 DOI: 10.3390/plants12244163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
This study aimed to evaluate the response of Toona ciliata seedlings to sublethal doses of glyphosate. The increasing use of glyphosate in agriculture concerns the scientific community, as the drift of this pollutant into aquatic systems or atmospheric currents can affect non-target species. Therefore, we need to understand how non-target species respond to small doses of this herbicide. T. ciliata seedlings (clone BV-1110) were exposed to sublethal doses of glyphosate (0, 9.6, 19.2, 38.4, 76.8 g ae ha-1). Anatomical, physiological, and photochemical analyses were performed 60 days after herbicide application, and growth assessments were carried out after 160 days of cultivation. We found that sublethal doses of glyphosate above 19.2 g ae ha-1 induced toxicity symptoms in Toona ciliata leaves. These symptoms were mild in some cases, such as chlorosis, but severe in other cases, such as tissue necrosis. We observed a positive relationship between increased plant height and photochemical yield with plant exposure to sub-doses 9.6 and 19.2 g ae ha-1. A sublethal dose of 38.4 g ae ha-1 improved the photosynthetic rate and carboxylation efficiency. Thus, we confirmed the hypothesis of a hormetic effect when T. ciliata was exposed to sub-doses of glyphosate equal to or lower than 38.4 g ae ha-1. However, the sublethal dose of 76.8 g ae ha-1 must be considered toxic, impacting photosynthetic activity and, consequently, the height of T. ciliata. The stem diameter of T. ciliata responded positively to increasing glyphosate doses. This occurs to compensate for the negative effect of glyphosate on water absorption. Further research will provide valuable information for harnessing the potential benefits of hormesis to improve the productivity of T. ciliata.
Collapse
Affiliation(s)
- Giselle Santos de Faria
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Leandro Carlos
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Adriano Jakelaitis
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Samylla Tassia Ferreira de Freitas
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Taíza Andressa Vicentini
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| | - Igor Olacir Fernandes Silva
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Sebastião Carvalho Vasconcelos Filho
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| | - Lucas Loram Lourenço
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| | - Fernanda Santos Farnese
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| | - Marco Aurélio Batista
- Programa de Pós-Graduação em Recursos Naturais do Cerrado, Universidade Estadual de Goiás, BR-153, Km 99, Qd. Área, Km 99, Campus Bairro São João, Anápolis 75132-903, GO, Brazil;
| | - Luciana Cristina Vitorino
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| |
Collapse
|
4
|
Traxler C, Gaines TA, Küpper A, Luemmen P, Dayan FE. The nexus between reactive oxygen species and the mechanism of action of herbicides. J Biol Chem 2023; 299:105267. [PMID: 37734554 PMCID: PMC10591016 DOI: 10.1016/j.jbc.2023.105267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Herbicides are small molecules that act by inhibiting specific molecular target sites within primary plant metabolic pathways resulting in catastrophic and lethal consequences. The stress induced by herbicides generates reactive oxygen species (ROS), but little is known about the nexus between each herbicide mode of action (MoA) and their respective ability to induce ROS formation. Indeed, some herbicides cause dramatic surges in ROS levels as part of their primary MoA, whereas other herbicides may generate some ROS as a secondary effect of the stress they imposed on plants. In this review, we discuss the types of ROS and their respective reactivity and describe their involvement for each known MoA based on the new Herbicide Resistance Action Committee classification.
Collapse
Affiliation(s)
- Catherine Traxler
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Anita Küpper
- Plant Biotechnology Division, Bayer CropScience, Chesterfield, Missouri, USA
| | - Peter Luemmen
- Research & Development Division, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
5
|
Fan J, Li J, Zhou W, Gao H, Lu R, Guo H. An 'on-off-on' fluorescent switch based on a luminous covalent organic framework for the rapid and selective detection of glyphosate. LUMINESCENCE 2023; 38:1729-1737. [PMID: 37400417 DOI: 10.1002/bio.4549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Glyphosate, the most used herbicide in the world, has a residue problem that cannot be ignored. However, glyphosate itself does not have fluorescence emission and lacks the conditions for fluorescence detection. In this work, a rapid and selective fluorescence detection method of glyphosate was designed by an 'on-off-on' fluorescent switch based on a luminous covalent organic framework (L-COF). Only the fixed concentration of Fe3+ as an intermediate could trigger the fluorescent switch and no incubation step was required. The proposed method showed good accuracy with a correlation coefficient of 0.9978. The method's limits of detection and quantitation were 0.88 and 2.93 μmol/L, which were lower than the maximum allowable residue limits in some regulations. Environmental water samples and tomatoes were selected as actual samples to verify the application in a complex matrix. A satisfactory mean recovery from 87% to 106% was gained. Furthermore, Fe3+ could induce fluorescence quenching of L-COF through the photo-induced electron transfer (PET) effect, while the addition of glyphosate could block the PET effect to achieve detection. These results demonstrated the proposed method had abilities to detect glyphosate and broaden the application of L-COF.
Collapse
Affiliation(s)
- Jiaxuan Fan
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | | | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Cabral CM, Souza MDF, Alencar BTB, Ferreira EA, Silva DV, Reginaldo LTRT, Dos Santos JB. Sensibility, multiple tolerance and degradation capacity of forest species to sequential contamination of herbicides in groundwaters. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130914. [PMID: 36758438 DOI: 10.1016/j.jhazmat.2023.130914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Herbicides have already reported environmental contamination in several countries with intense agricultural activity. The transport of these molecules due to leaching and surface runoff has frequently caused contamination of rivers, groundwater and soil in non-agricultural areas. Thereby, we propose to investigate the sensitivity and phytoremediation capacity of 5 native Cerrado species to sequential exposure to 2,4-D, atrazine, diuron and hexazinone. We hypothesized that species have different sensitivity levels to sequential exposure to these herbicides absorbed from contaminated simulated groundwater model. The objectives of this work were: i) to determine the sensitivity of native cerrado species by sequential exposure to 2,4-D, atrazine, diuron and hexazinone via contaminated simulated groundwater model; ii) to evaluate the presence and degradation capacity of these herbicides in the soil and water leached by tolerant species. Some species showed high phytoremediation potential for groundwater already contaminated with 2,4-D, atrazine, diuron and hexazinone. S. macranthera and C. antiphilitica are tolerant and reduce the concentration of herbicides in simulated groundwater model. Among these species, C. antiphilitica reduces the concentration of all herbicides, suggesting greater adaptability to compose decontamination strategies in areas close to agricultural systems that use 2,4-D herbicides, atrazine, diuron and hexazinone. Also, our results show that herbicides can act as a selection factor for Cerrado forest species, however, two species can mitigate the effects of contamination due to their ability to degrade herbicides.
Collapse
Affiliation(s)
- Cássia Michelle Cabral
- Department of Agronomy, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | | | | | | | | | | | - José Barbosa Dos Santos
- Department of Agronomy, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| |
Collapse
|
7
|
Vieira C, Marcon C, Droste A. Phytotoxic and cytogenotoxic assessment of glyphosate on Lactuca sativa L. BRAZ J BIOL 2022; 84:e257039. [PMID: 35293479 DOI: 10.1590/1519-6984.257039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/31/2022] [Indexed: 12/25/2022] Open
Abstract
The active ingredient glyphosate is the most commercialized herbicide on the world market due to its capability in eliminating weeds. However, it can harm the development of non-target organisms and threaten environmental quality. This study analyzed the effects of potentially toxic concentrations of glyphosate on germination, growth, cell cycle and genomic stability of Lactuca sativa L., and identified the most sensitive variables for assessing the toxicity of this herbicide to this biomonitor. Seeds of L. sativa were germinated in Petri dishes containing a sheet of filter paper moistened with 5 mL of a concentration of glyphosate (1.34, 3.35, 6.70, 10.05, 13.40 mg L-1). Controls consisted of distilled water (negative) and 3 mg L-1 CuSO4 (positive). Macroscopic and microscopic variables were analyzed. The germination of L. sativa was not affected by the concentrations of glyphosate. Root length and shoot height of the plants and the mitotic index decreased from the lowest concentration tested on. The chromosomal anomaly index and frequency of micronuclei increased by 3.2 and 22 times, respectively, with the presence of the lowest concentration of glyphosate compared to the negative control. The observed phytotoxic and cytogenotoxic effects demonstrate the negative influence that glyphosate has on the development of L. sativa. Root length and microscopic variables showed the highest sensitivity. This study warns of the possible harmful effects that glyphosate can have on non-target organisms and suggests greater control over the use of this herbicide to mitigate its environmental impact.
Collapse
Affiliation(s)
- C Vieira
- Universidade Feevale, Programa de Pós-graduação em Qualidade Ambiental, Laboratório de Biotecnologia Vegetal, Novo Hamburgo, RS, Brasil
| | - C Marcon
- Universidade Feevale, Programa de Pós-graduação em Qualidade Ambiental, Laboratório de Biotecnologia Vegetal, Novo Hamburgo, RS, Brasil
| | - A Droste
- Universidade Feevale, Programa de Pós-graduação em Qualidade Ambiental, Laboratório de Biotecnologia Vegetal, Novo Hamburgo, RS, Brasil
| |
Collapse
|
8
|
de Faria GS, Carlos L, Jakelaitis A, Filho SCV, Lourenço LL, da Costa AM, Gonçalves IA. Tolerance of Hymenaea courbaril L. to glyphosate. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:168-177. [PMID: 34773558 DOI: 10.1007/s10646-021-02499-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The objective was to evaluate the effect of the glyphosate on Hymenaea courbaril L. A randomized block design with five replications was implemented. Each experimental unit was composed of one plant in a 5 L container. The treatments were 0 "control"; 96; 240; 480; and 960 g ha-1 "corresponding to 10, 25, 50, and 100% of the commercial dose of glyphosate recommended for Caryocar brasiliense crop, respectively". The evaluations were performed at 24 h and 60 days after application. Visual and anatomical evaluations did not change regardless of the dose, while the histochemical evaluation showed an accumulation of starch grains in leaf tissues. There was an increase in the photosynthetic rate, in the electron transport rate, and in the effective quantum yield of photosystem II at 24 h after application. At 60 days after the application of the treatments, the photosynthetic rate showed a slight decrease and the transpiratory rate showed quadratic behavior. An increase in plant height was observed up to the dose of 480 g ha-1, a linear increase in stem diameter and a decrease in the number of leaves with increasing glyphosate doses. These results show that the cuticle protected the plant, and that the little absorbed glyphosate increased photosynthesis and transpiration to favor the plants. We can conclude that the H. courbaril species is able to survive after contact with glyphosate during the evaluated time, with no visual and/or anatomical damage, showing increases in growth and physiological characteristics for the tested doses.
Collapse
Affiliation(s)
- Giselle Santos de Faria
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Leandro Carlos
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil.
| | - Adriano Jakelaitis
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Sebastião Carvalho Vasconcelos Filho
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Lucas Loram Lourenço
- Programa de Pós-Graduação em Biotecnologia em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Andreia Mendes da Costa
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Izadora Andrade Gonçalves
- Laboratório de anatomia vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| |
Collapse
|