1
|
Yaashikaa PR, Karishma S, Kamalesh R, A S, Vickram AS, Anbarasu K. A systematic review on enhancement strategies in biochar-based remediation of polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 355:141796. [PMID: 38537711 DOI: 10.1016/j.chemosphere.2024.141796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/25/2023] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive ecological pollutants produced essentially during the inadequate burning of organic materials. PAHs are a group of different organic compounds that are made out of various aromatic rings. PAHs pose a serious risk to humans and aquatic ecosystems because of their mutagenic and carcinogenic properties. In this way, there is a critical prerequisite to utilizing successful remediation strategies and methods to limit the dangerous effect of these pollutants on the ecosystem. Biochar has believed of intriguing properties such as simple manufacturing operations and more affordable and more productive materials. Biochar is a sustainable carbonaceous material that has an enormous surface area with bountiful functional groups and pore structure, which has huge potential for the remediation of toxic pollutants. This review emphasizes the occurrence, development, and fate of toxic PAHs in the environment. In the present review, the properties and role of biochar in the removal of PAHs were illustrated, and the influencing factors and an efficient key mechanism of biochar for the remediation of PAHs were discussed in detail. Various surface modification methods can be utilized to improve the biochar properties with the magnetization process; the advancements of modified biochar are pointed out in this review. Finally, the constraints and prospects for the large-scale application of biochar in the remediation of toxic pollutants are highlighted.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Saravanan A
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
2
|
Li S, Zhang S, Xu J, Guo R, Allam AA, Rady A, Wang Z, Qu R. Photodegradation of polycyclic aromatic hydrocarbons on soil surface: Kinetics and quantitative structure-activity relationship (QSAR) model development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123541. [PMID: 38342434 DOI: 10.1016/j.envpol.2024.123541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have attracted much attention because of their widespread existence and toxicity. Photodegradation is the main natural decay process of PAHs in soil. The photodegradation kinetics of benzopyrene (BaP) on 16 kinds of soils and 10 kinds of PAHs on Hebei (HE) soil were studied. The results showed that BaP had the highest degradation rate in Shaanxi (SN) soil (kobs = 0.11 min-1), and anthracene (Ant) was almost completely degraded after 16 h of irradiation in HE soil. Two quantitative structure-activity relationship (QSAR) models were established by the multiple linear regression (MLR) method. The developed QSAR models have good stability, robustness and predictability. The model revealed that the main factors affecting the photodegradation of PAHs are soil organic matter (SOM) and the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (Egap). SOM can function as a photosensitizer to induce the production of active species for photodegradation, thus favoring the photodegradation of PAHs. In addition, compounds with lower Egap are less stable and more reactive, and thus are more prone to photodegradation. Finally, the QSAR model was optimized using machine learning approach. The results of this study provide basic information on the photodegradation of PAHs and have important significance for predicting the environmental behavior of PAHs in soil.
Collapse
Affiliation(s)
- Shuyi Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Jianqiao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| |
Collapse
|
3
|
Rizzi C, Villa S, Waichman AV, de Souza Nunes GS, de Oliveira R, Vighi M, Rico A. Occurrence, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in the Amazon river. CHEMOSPHERE 2023:139285. [PMID: 37353170 DOI: 10.1016/j.chemosphere.2023.139285] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
The Amazon is the largest river by discharge volume and one of the most biodiverse biomes in the world. Lately, there has been a rapid increase of the urban population in the region, which has been translated into a growing emission of organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) into surface water bodies. This study provides the most comprehensive evaluation of the PAH contamination levels in surface waters of the Amazon basin. We investigated the occurrence and potential sources of 16 priority PAHs and characterised their risks for freshwater ecosystems. For this, we took 40 water samples from different sites along the Brazilian part of the Amazon River, including three major tributaries, and smaller rivers crossing the main urban areas. The results of this study show that PAHs are widespread contaminants in rivers of the Brazilian Amazon. The sum of the total concentration of the 16 priority PAHs reached values of 134 ng L-1 in the Amazon River, and 163 ng L-1 near densely populated areas. On the other hand, the total PAH concentration was generally lower in the monitored tributaries. In most samples, the contamination pattern was dominated by high molecular weight PAHs, suggesting a major contribution of pyrogenic sources, although petrogenic contamination was also present in some locations near urban areas. We assessed ecological risks posed by PAH mixtures using a hazard index. The results indicated that PAH contamination is not likely to pose direct toxic effects for Amazonian freshwater organisms, however continued monitoring is recommended near densely populated areas.
Collapse
Affiliation(s)
- Cristiana Rizzi
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, Milan, 20126, Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, Milan, 20126, Italy
| | - Andrea V Waichman
- Federal University of the Amazon, Institute of Biological Sciences, Av. Rodrigo Otávio Jordao Ramos 3000, Manaus, 69077-000, Brazil
| | - Gabriel Silva de Souza Nunes
- Federal University of Pernambuco, Department of Zoology, Av. Prof Moraes Rego 1235, Cidade Universitária, Recife, 50670-901, Brazil
| | - Rhaul de Oliveira
- University of Campinas, School of Technology, Rua Paschoal Marmo 1888 - Jd. Nova Itália, Limeira, 13484-332, Brazil
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, 28805, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, 28805, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrático José, Beltrán 2, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
4
|
Diversity and Metabolic Potential of a PAH-Degrading Bacterial Consortium in Technogenically Contaminated Haplic Chernozem, Southern Russia. Processes (Basel) 2022. [DOI: 10.3390/pr10122555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are chemically recalcitrant carcinogenic and mutagenic compounds with primarily anthropogenic origin. The investigation of the effects of emissions from energy enterprises on soil microbiomes is of a high priority for modern soil science. In this study, metagenomic profiling of technogenic contaminated soils was carried out based on bioinformatic analysis of shotgun metagenome data with PAH-degrading genes identification. The use of prokaryotic consortia has been often used as one of the bio-remediation approaches to degrade PAHs with different molecular weight. Since the process of PAH degradation predominantly includes non-culturable or yet-to-be cultured species, metagenomic approaches are highly recommended for studying the composition and metabolic abilities of microbial communities. In this study, whole metagenome shotgun sequencing of DNA from two soils with varying PAH levels was performed. In the control site, the total content of 12 priority PAHs was 262 µg kg−1. The background soil levels in the polluted site for PAHs with 3 or more rings exceeded this, at 800 µg kg−1. The abundance of genes and taxa associated with PAH degradation in these two sites were estimated. Despite differences in PAH concentrations up to 1200 µg kg−1, individual and operon-organized PAH degradation genes were almost equally abundant and diverse in pristine and highly contaminated areas. The most numerous taxa in both spots were actinobacteria from Terrabacteria group. In addition to well-known PAH degraders such as Gordonia and Rhodococcus, genes corresponding to the PAH degradation were found in Azoarcus, Burkholderia and Variovorax. The data shows non-specificity and multifunctionality of metabolic pathways encoded in the genes of PAH-degrading microorganisms.
Collapse
|
5
|
Caumo S, Lázaro WL, Sobreira Oliveira E, Beringui K, Gioda A, Massone CG, Carreira R, de Freitas DS, Ignacio ARA, Hacon S. Human risk assessment of ash soil after 2020 wildfires in Pantanal biome (Brazil). AIR QUALITY, ATMOSPHERE & HEALTH 2022; 15:2239-2254. [PMID: 36187166 PMCID: PMC9516519 DOI: 10.1007/s11869-022-01248-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
Wildfires have increased in the last years and, when caused by intentional illegal burnings, are frequently run out of control. Wildfire has been pointed out as an important source of polycyclic aromatic hydrocarbons (PAHs) and trace elements (TEs) — such as, As, Ni, and Pb — to environmental compartments, and thus may pose a risk to human health and to the ecosystem. In 2020, the Brazilian biome, Pantanal, faced the largest losses by wildfires in the last 22 years. Ashes from the topsoil layer in Pantanal were collected after these wildfires at 20 sites divided into the sediment, forest, PF, PS, and degraded sites. Toxicity and associated risks for human health were also evaluated. The areas highly impacted by wildfires and by artisanal gold mining activities showed higher concentrations for TEs and PAHs than the protected areas. Pb varied from 8 ± 4 to 224 ± 81 mg kg−1, and total PAH concentration ranged between 880 ± 314 and 1350 ± 70 ng g−1, at sites impacted by anthropogenic activities. Moreover, health risk assessments for TE and PAH indicated a potentially great risk for children and adults, via ingestion, inhalation, and dermal pathway. The carcinogenic risks exceeded reference values, for both TE and PAH, suggesting harmful conditions, especially for vulnerable groups, such as children and the elderly.
Collapse
Affiliation(s)
- Sofia Caumo
- National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ Brazil
- Brazilian Research Network on Global Climate Change – Rede Clima, Rio de Janeiro, Brazil
| | - Wilkinson L. Lázaro
- Research Centre, Limnology, Biodiversity and Ethnobiology of the Pantanal, University of the State of Mato Grosso, Cáceres, MT Brazil
| | - Ernandes Sobreira Oliveira
- Research Centre, Limnology, Biodiversity and Ethnobiology of the Pantanal, University of the State of Mato Grosso, Cáceres, MT Brazil
| | - Karmel Beringui
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ Brazil
| | - Carlos German Massone
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ Brazil
| | - Renato Carreira
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ Brazil
| | - Djair Sergio de Freitas
- Research Centre, Limnology, Biodiversity and Ethnobiology of the Pantanal, University of the State of Mato Grosso, Cáceres, MT Brazil
| | - Aurea R. A. Ignacio
- Research Centre, Limnology, Biodiversity and Ethnobiology of the Pantanal, University of the State of Mato Grosso, Cáceres, MT Brazil
| | - Sandra Hacon
- National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ Brazil
- Brazilian Research Network on Global Climate Change – Rede Clima, Rio de Janeiro, Brazil
- Research Centre, Limnology, Biodiversity and Ethnobiology of the Pantanal, University of the State of Mato Grosso, Cáceres, MT Brazil
| |
Collapse
|
6
|
Polycyclic Aromatic Hydrocarbons (PAHs) in the Dissolved Phase, Particulate Matter, and Sediment of the Sele River, Southern Italy: A Focus on Distribution, Risk Assessment, and Sources. TOXICS 2022; 10:toxics10070401. [PMID: 35878306 PMCID: PMC9324633 DOI: 10.3390/toxics10070401] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 01/27/2023]
Abstract
The Sele River, located in the Campania Region (southern Italy), is one of the most important rivers and the second in the region by average water volume, behind the Volturno River. To understand the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the Sele River, water sediment samples were collected from areas around the Sele plain at 10 sites in four seasons. In addition, the ecosystem health risk and the seasonal and spatial distribution of PAHs in samples of water and sediment were assessed. Contaminant discharges of PAHs into the sea were calculated at about 1807.9 kg/year. The concentration ranges of 16 PAHs in surface water (DP), suspended particulate matter (SPM), and sediment were 10.1–567.23 ng/L, 121.23–654.36 ng/L, and 331.75–871.96 ng/g, respectively. Isomeric ratio and principal component analyses indicated that the PAH concentrations in the water and sediment near the Sele River were influenced by industrial wastewater and vehicle emissions. The fugacity fraction approach was applied to determine the trends for the water-sediment exchange of 16 priority PAHs; the results indicated that fluxes, for the most part, were from the water into the sediment. The toxic equivalent concentration (TEQ) of carcinogenic PAHs ranged from 137.3 to 292.6 ngTEQ g−1, suggesting that the Sele River basin presents a definite carcinogenic risk.
Collapse
|
7
|
Zeng X, Liu Y, Xu L, Hu Q, Hu J, Yu Z. Co-occurrence and potential ecological risk of parent and oxygenated polycyclic aromatic hydrocarbons in coastal sediments of the Taiwan Strait. MARINE POLLUTION BULLETIN 2021; 173:113093. [PMID: 34744012 DOI: 10.1016/j.marpolbul.2021.113093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Thirty-two surface sediment samples, collected from the Taiwan Strait (TWS), were investigated for the occurrence, composition profile, and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs). PAHs were ubiquity in the TWS with a total concentration (∑PAHs, excluding naphthalene due to its high volatility) ranging from 17.8-213 ng g-1. Benzo[b] fluoranthene, fluoranthene, phenanthrene, and pyrene were the predominant PAHs. Also, eight OPAHs were detected, having a cumulative concentration range (∑OPAHs) of 10.5-118 ng g-1, predominated by anthraquinone and 6H-Benzo[c,d]Pyren-6-one. Higher concentrations of ∑PAHs and ∑OPAHs were detected at sampling sites adjacent to the mainland and in the northwest part of the TWS. The results suggested important continental input, and particle sedimentation under the specific hydrodynamic conditions of the region. Based on the measured concentrations and sediment quality guidelines, PAHs had a limited ecological impact on the area.
Collapse
Affiliation(s)
- Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Yi Liu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Xu
- Jiangxi Academy of Eco-environmental Sciences and Planning, Nanchang 330039, China
| | - Qiongpu Hu
- Hangzhou PuYu Technology Development Co., Ltd, Hangzhou 311305, China
| | - Jianfang Hu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
8
|
Hardoim CCP, Ramaglia AC, da Silva J, Taniguchi S, Lourenço RA. Organic contaminants in marine environment - Let us not forget the shallow areas. MARINE POLLUTION BULLETIN 2021; 173:113021. [PMID: 34628346 DOI: 10.1016/j.marpolbul.2021.113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The evaluation of anthropogenic pressures in marine environments commonly involves sediments, water and marine biota. However, the evaluation of the quality of the beach sediment and sediments from shallow areas are scarce compared to sediments from deeper areas in environmental assessment studies. In this study polycyclic aromatic hydrocarbons and linear alkylbenzenes were assessed in sediments from shallow areas of the São Sebastião channel, southeastern Brazil. The channel is part of the Marine Protected Area of the Northern Coast of São Paulo State besides holds the largest petroleum terminal in South America further than three sewage outfalls. Despite the concentrations of these contaminants in the sediments were relatively low compared to those found in the sediments from deeper areas of the channel, suggesting low toxicity of the beach sediments, the contamination reflected the pattern of the sediments of the São Sebastião channel.
Collapse
Affiliation(s)
| | - Andressa Cristina Ramaglia
- Instituto de Biociências, Universidade Estadual Paulista, Campus do Litoral Paulista, São Vicente, São Paulo, SP, Brazil; Centro de Aquicultura, Universidade Estadual Paulista, Jaboticabal, São Paulo, SP, Brazil
| | - Josilene da Silva
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP, Brazil
| | - Rafael André Lourenço
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP, Brazil.
| |
Collapse
|