1
|
Fogliano C, Carotenuto R, Agnisola C, Simoniello P, Karam M, Manfredonia C, Avallone B, Motta CM. Benzodiazepine Delorazepam Induces Locomotory Hyperactivity and Alterations in Pedal Mucus Texture in the Freshwater Gastropod Planorbarius corneus. Int J Mol Sci 2023; 24:17070. [PMID: 38069390 PMCID: PMC10706940 DOI: 10.3390/ijms242317070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Benzodiazepines, psychotropic drugs, are ubiquitous in the aquatic environment due to over-consumption and inefficient removal by sewage treatment plants. Bioaccumulation with consequent behavioral and physiological effects has been reported in many aquatic species. However, the responses are species-specific and still poorly understood. To improve the knowledge, we exposed the freshwater snail Planorbarius corneus to 1, 5, or 10 µg/L of delorazepam, the most widely consumed benzodiazepine in Italy. Conventional behavioral tests were used to assess the effects on locomotor and feeding behavior. Histological and biochemical analyses were also performed to detect possible changes in the structure and composition of the foot mucus and glands. The results show a paradoxical response with reduced feeding activity and locomotor hyperactivity. Pedal mucus was altered in texture but not in composition, becoming particularly rich in fibrous collagen-like material, and a significant change in the protein composition was highlighted in the foot. In conclusion, exposure to delorazepam induces disinhibited behavior in Planorbarius corneus, potentially increasing the risk of predation, and an increase in mucus protein production, which, together with reduced feeding activity, would severely compromise energy resources.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, 80143 Naples, Italy;
| | - Myriam Karam
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Claudia Manfredonia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| |
Collapse
|
2
|
Ratnasari A. Modified polymer membranes for the removal of pharmaceutical active compounds in wastewater and its mechanism-A review. Bioengineered 2023; 14:2252234. [PMID: 37712708 PMCID: PMC10506444 DOI: 10.1080/21655979.2023.2252234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023] Open
Abstract
Membrane technology can play a suitable role in removing pharmaceutical active compounds since it requires low energy and simple operation. Even though membrane technology has progressed for wastewater applications nowadays, modifying membranes to achieve the strong desired membrane performance is still needed. Thus, this study overviews a comprehensive insight into the application of modified polymer membranes to remove pharmaceutical active compounds from wastewater. Biotoxicity of pharmaceutical active compounds is first prescribed to gain deep insight into how membranes can remove pharmaceutical active compounds from wastewater. Then, the behavior of the diffusion mechanism can be concisely determined using mass transfer factor model that represented by β and B with value up to 2.004 g h mg-1 and 1.833 mg g-1 for organic compounds including pharmaceutical active compounds. The model refers to the adsorption of solute to attach onto acceptor sites of the membrane surface, external mass transport of solute materials from the bulk liquid to the membrane surface, and internal mass transfer to diffuse a solute toward acceptor sites of the membrane surface with evidenced up to 0.999. Different pharmaceutical compounds have different solubility and relates to the membrane hydrophilicity properties and mechanisms. Ultimately, challenges and future recommendations have been presented to view the future need to enhance membrane performance regarding fouling mitigation and recovering compounds. Afterwards, the discussion of this study is projected to play a critical role in advance of better-quality membrane technologies for removing pharmaceutical active compounds from wastewater in an eco-friendly strategy and without damaging the ecosystem.
Collapse
Affiliation(s)
- Anisa Ratnasari
- Department of Environmental Engineering, Faculty of Civil Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, Indonesia
| |
Collapse
|
3
|
Afsa S, De Marco G, Cristaldi A, Giannetto A, Galati M, Billè B, Conti GO, Ben Mansour H, Ferrante M, Cappello T. Single and combined effects of caffeine and salicylic acid on mussel Mytilus galloprovincialis: Changes at histomorphological, molecular and biochemical levels. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104167. [PMID: 37286067 DOI: 10.1016/j.etap.2023.104167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Caffeine (CAF) and salicylic acid (SA) are frequently detected in waterbody, though information on their biological impact is poor. This work assesses the effects of CAF (5ng/L to 10µg/L) and SA (0.05µg/L to 100µg/L) alone and combined as CAF+SA (5ng/L+0.05µg/L to 10µg/L+100µg/L) on mussel Mytilus galloprovincialis under 12-days exposure by histomorphology of digestive gland and oxidative stress defense at molecular and biochemical levels. Besides evaluating tissue accumulation, absence of histomorphological damage and haemocyte infiltration highlighted activation of defensive mechanisms. Up-regulation of Cu/Zn-sod, Mn-sod, cat and gst combined with increased catalase and glutathione S-transferase activity were found in CAF-exposed mussels, while SA reduced ROS production and mitochondrial activity. CAF+SA exposure induced differential responses, and the integrated biomarker response (IBR) revealed more pronounced effects of SA than CAF. These results enlarge knowledge on pharmaceuticals impact on non-target organisms, emphasizing the need for proper environmental risk assessment.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antonio Cristaldi
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Margherita Ferrante
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
4
|
Mercado SAS, Galvis DGV. Paracetamol ecotoxicological bioassay using the bioindicators Lens culinaris Med. and Pisum sativum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61965-61976. [PMID: 36934188 PMCID: PMC10024602 DOI: 10.1007/s11356-023-26475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Paracetamol is one of the most widely used drugs worldwide, yet its environmental presence and hazardous impact on non-target organisms could rapidly increase. In this study, the possible cytotoxic effects of paracetamol were evaluated using two bioindicator plants Lens culinaris and Pisum sativum. Concentrations of 500, 400, 300, 200, 100, 50, 25, 5, 1 mg L-1, and a control (distilled water) were used for a total of 10 treatments, which were subsequently applied on seeds of Lens culinaris Med. and Pisum sativum L.; after 72 h of exposure, root growth, mitotic index, percentage of chromosomal abnormalities, and the presence of micronucleus were evaluated. The cytotoxic effect of paracetamol on L. culinaris and P. sativum was demonstrated, reporting the inhibition of root growth, the presence of abnormalities, and a significant micronucleus index at all concentrations used, which shows that this drug has a high degree of toxicity.
Collapse
|
5
|
Mdaini Z, Telahigue K, Hajji T, Rabeh I, Pharand P, El Cafsi M, Tremblay R, Gagné JP. Bioaccumulation of polycyclic aromatic hydrocarbons (PAH) in Polychaeta Marphysa sanguinea in the anthropogenically impacted Tunis Lagoon: DNA damage and immune biomarkers. MARINE POLLUTION BULLETIN 2022; 184:114104. [PMID: 36126481 DOI: 10.1016/j.marpolbul.2022.114104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
This work assessed the impact of polycyclic aromatic hydrocarbons (PAHs) on the polychaeta Marphysa sanguinea in Tunis Lagoon. Highest PAHs concentrations were accumulated at station E with maximum Σ PAH of 6028,87 ng/g DW. Changes in animal physiology were clearly related to bioaccumulated PAH. In fact, high levels of immune biomarkers (cyclooxygenase [COX] and lysozyme activity with maximum of 44631,10 FU/mn/mg protein and 0,017 lysozyme activity/mn/mg protein, respectively) were recorded at stations B and E. Triacylglycerol (TAG), the energy source, was lowest at the most polluted stations (E and B), while phospholipids (PL) were highest at the control station. Statistical analysis revealed a probable effect of both low and high molecular weight PAHs on variations in energy storage lipids (TAG and sterol and wax esters [SE/WE]) and membrane lipids, particularly PL. Our results encourage the use of M. sanguinea to assess pollution levels in coastal ecosystems.
Collapse
Affiliation(s)
- Zied Mdaini
- Laboratoire d'Ecologie, Biologie et Physiologie des Organismes Aquatiques LR18ES41, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia; Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada.
| | - Khaoula Telahigue
- Laboratoire d'Ecologie, Biologie et Physiologie des Organismes Aquatiques LR18ES41, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia
| | - Tarek Hajji
- Laboratoire de Biotechnologie et Valorisation des Bio-Géo Ressources LR11ES31, Institut Supérieur de Biotechnologie de Sidi Thabet, Université La Manouba, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Imen Rabeh
- Laboratoire d'Ecologie, Biologie et Physiologie des Organismes Aquatiques LR18ES41, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia
| | - Pamela Pharand
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - M'hamed El Cafsi
- Laboratoire d'Ecologie, Biologie et Physiologie des Organismes Aquatiques LR18ES41, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia
| | - Rejean Tremblay
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Jean Pierre Gagné
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
6
|
Afsa S, Vieira M, Nogueira AF, Mansour HB, Nunes B. A multi-biomarker approach for the early assessment of the toxicity of hospital wastewater using the freshwater organism Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19132-19147. [PMID: 34713402 DOI: 10.1007/s11356-021-16977-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Hospital wastewater (HWW) contains different hazardous substances resulting from a combination of medical and non-medical activities of hospitals, including pharmaceutical residues. These substances may represent a threat to the aquatic environment if they do not follow specific treatment processes. Therefore, we aimed to investigate the effects of the untreated effluent collected from a general hospital in Mahdia City (Tunisia) on neonatal stages of the freshwater crustacean Daphnia magna. Test organisms were exposed to three proportions (3.12%, 6.25%, and 12.5% v/v) of HWW. After 48 h of exposure, a battery of biomarkers was measured, including the quantification of antioxidant enzymes [catalase (CAT) and total and selenium-dependent glutathione peroxidase (total GPx; Se-GPx)], phase II biotransformation isoenzymes glutathione-S-transferases (GSTs), cyclooxygenases (COX) involved in the regulation of the inflammatory process, and total cholinesterases (ChEs) activities. Lipid peroxidation (LPO) was measured to estimate oxidative damage. The here-obtained results showed significant decreases of CAT and GSTs activities and also on LPO content in daphnids, whereas Se-GPx activity was significantly increased in a dose-dependent manner. Impairment of cholinesterasic and COX activities were also observed, with a significant decrease of ChEs and an increase of COX enzymatic activities. Considering these findings, HWW was capable of inducing an imbalance of the antioxidant defense system, but without resulting in oxidative damage in test organisms, suggesting that peroxidases and alternative detoxifying pathways were able to prevent the oxidant potential of several drugs, which were found in the tested effluents. In general, this study demonstrated the toxicity of hospital effluents, measured in terms of the potential impairment of key pathways, namely neurotransmission, antioxidant defense, and inflammatory homeostasis of crustaceans.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Madalena Vieira
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Filipa Nogueira
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Bruno Nunes
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Emerging Contaminants in Seafront Zones. Environmental Impact and Analytical Approaches. SEPARATIONS 2021. [DOI: 10.3390/separations8070095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Some chemical substances have the potential to enter the coastal and marine environment and cause adverse effects on ecosystems, biodiversity and human health. For a large majority of them, their fate and effects are poorly understood as well as their use still unregulated. Finding effective and sustainable strategies for the identification of these emerging and/or anthropogenic contaminants that might cause polluting effects in marine environments to mitigate their adverse effects, is of utmost importance and a great challenge for managers, regulators and researchers. In this review we will evaluate the impact of emerging contaminants (ECs) on marine coastal zones namely in their ecosystems and biodiversity, highlighting the potential risks of organic pollutants, pharmaceuticals and personal care products. Emerging microextraction techniques and high-resolution analytical platforms used in isolation, identification and quantification of ECs will be also reviewed.
Collapse
|