1
|
Ishtiaq A, Mushtaq I, Rehman H, Mushtaq I, Mushtaq I, Abbasi SW, Liaqat F, Rasheed A, Ahmad S, Akhtar Z, Murtaza I. Tetra aniline-based polymers ameliorate BPA-induced cardiotoxicity in Sprague Dawley rats, in silico and in vivo analysis. Life Sci 2024; 358:123104. [PMID: 39366552 DOI: 10.1016/j.lfs.2024.123104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
AIMS Bisphenol A (BPA), xenoestrogen, is an environmental toxicant, that generates oxidative stress leading to cardiotoxicity. The oxidative stress can be neutralized by natural and synthetic antioxidants. The present study elucidates the highly selective antioxidative potential of synthetic tetra aniline polymers Es-37 and L-37 against Bisphenol A-induced cardiac cellular impairments and the role of miRNA-15a-5p in the regulation of different apoptotic proteins. MATERIALS AND METHODS The molecular docking of L-37 and Es-37 with three proteins (p53, Cytochrome c, and Bcl-2) were performed. The dose of 1 mg/kg BW of BPA, 1 mg/kg BW Es-37 and L-37 and 50 mg/kg BW N-acetyl cysteine (NAC) was administered to Sprague Dawley rats. The miRNA and target gene expression were confirmed by qRt-PCR and Immunoblotting. KEY FINDINGS In our results, BPA administration significantly elevated the reactive oxygen species (ROS), p53, cytochrome c, and particularly miRNA-15a-5p expression; however: these changes were notably reversed by Es-37 and L-37 treatment. Additionally, molecular docking of synthetic polymers validated that L-37 has a greater binding affinity with the target proteins compared to Es-37, with the highest binding values reported for the enzymatic protein cytochrome c. SIGNIFICANCE These results suggest that both synthetic polymers Es-37 and L-37 have the potential to scavenge free radicals, boost-up antioxidant enzyme activities, and avert (BPA-induced) toxicity, thus, may serve as cardioprotective agents. Moreover, this study first time proposes that miRNA-15a-5p overexpression is associated with oxidative stress and coincides with BPA induced cardiotoxicity, thus may serve as potential therapeutic target in future.
Collapse
Affiliation(s)
- Ayesha Ishtiaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Irrum Mushtaq
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Hina Rehman
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Iqra Mushtaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Iram Mushtaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Faroha Liaqat
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Ammarah Rasheed
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Zareen Akhtar
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Iram Murtaza
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| |
Collapse
|
2
|
Rashidi SK, Dezfouli MA, Khodagholi F, Dadashpour M, Shabani AA. Protective effect of melatonin against methamphetamine-induced attention deficits through miR-181/SIRT1 axis in the prefrontal cortex. Mol Biol Rep 2024; 51:690. [PMID: 38796575 DOI: 10.1007/s11033-024-09631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/09/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Methamphetamine (METH) is an addictive psychostimulant with deleterious effects on the central nervous system. Chronic use of METH in high doses impairs cognition, attention and executive functions, but the underlying mechanisms are still unclear. Sirtuin 1 (SIRT1) is a post-translational regulator that is downregulated following METH neurotoxicity. Melatonin is a neuroprotective hormone that enhances mitochondrial metabolism. Here, we evaluated the effect of melatonin on METH-induced attention deficits disorder and the involvement of the miR-181/SIRT1 axis in melatonin neuroprotection. METHODS AND RESULTS METH at a dose of 5 mg/kg was injected for 21 consecutive days. The animals were assigned to receive either melatonin or the vehicle after METH injections. Attention levels were evaluated with abject-based attention test. In the prefrontal cortex, the expression levels of miR-181a-5p, SIRT1, p53 and CCAR2, as well as the mtDNA copy numbers were evaluated using qRT-PCR and western blotting. The outcomes revealed that melatonin treatment following METH injections improved METH-induced attention deficits. METH toxicity can be associated with changes in the miR-181/SIRT1 axis, elevated levels of p53 and COXII, and decreased levels of mtDNA in the prefrontal cortex of adult rats. Interestingly, administration of melatonin can improve the expression of these molecules and reduces the toxic effects of METH. CONCLUSION Melatonin ameliorated the neurotoxicity of METH in the prefrontal cortex and the miR-181/SIRT1 axis is involve in the protective effects of melatonin. However, melatonin can be potentially administrated to improve attention impairment in METH use disorders.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Jamka M, Kurek S, Makarewicz-Bukowska A, Miśkiewicz-Chotnicka A, Wasiewicz-Gajdzis M, Walkowiak J. No Differences in Urine Bisphenol A Concentrations between Subjects Categorized with Normal Cognitive Function and Mild Cognitive Impairment Based on Montreal Cognitive Assessment Scores. Metabolites 2024; 14:271. [PMID: 38786748 PMCID: PMC11123393 DOI: 10.3390/metabo14050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
A link between bisphenol A (BPA) exposure and cognitive disorders has been suggested. However, the differences in BPA concentrations between subjects with and without cognitive impairment have not been analysed. Therefore, this observational study aimed to compare urine BPA levels in subjects with normal cognitive function (NCF) and mild cognitive impairment (MCI). A total of 89 MCI subjects and 89 well-matched NCF individuals were included in this study. Cognitive functions were assessed using the Montreal Cognitive Assessment (MOCA) scale. Urine BPA concentrations were evaluated by gas chromatography-mass spectrometry and adjusted for creatinine levels. Moreover, anthropometric parameters, body composition, sociodemographic factors, and physical activity were also assessed. Creatinine-adjusted urine BPA levels did not differ between the NCF and MCI groups (1.8 (1.4-2.7) vs. 2.2 (1.4-3.6) µg/g creatinine, p = 0.1528). However, there were significant differences in MOCA results between groups when the study population was divided into tertiles according to BPA concentrations (p = 0.0325). Nevertheless, multivariate logistic regression demonstrated that only education levels were independently associated with MCI. In conclusion, urine BPA levels are not significantly different between subjects with MCI and NCF, but these findings need to be confirmed in further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland; (M.J.); (S.K.); (A.M.-B.); (A.M.-C.); (M.W.-G.)
| |
Collapse
|
4
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
5
|
Meng L, Gui S, Ouyang Z, Wu Y, Zhuang Y, Pang Q, Fan R. Low-dose bisphenols exposure sex-specifically induces neurodevelopmental toxicity in juvenile rats and the antagonism of EGCG. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132074. [PMID: 37473573 DOI: 10.1016/j.jhazmat.2023.132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Bisphenols (BPs) can negatively affect neurobehaviors in rats, whereas the mechanism remains unclear. Here, the mechanism of BPs-induced neurodevelopmental toxicity and its effective detoxification measures were investigated in vitro and in vivo. In in vitro experiments, primary hippocampal neurons from neonatal rats of different genders were treated with bisphenol A (BPA), bisphenol S (BPS) and bisphenol B (BPB) at 1 nM-100 μM, epigallocatechin gallate (EGCG) and G15, an antagonist of G protein-coupled estrogen receptor (GPER) for 7 d. Results indicated that BPs affected neuronal morphogenesis, impaired GABA synthesis and Glu/GABA homeostasis. Neuronal morphogenetic damage induced by low-doses BPA may be mediated by GPER. Neurotoxicity of BPS is weaker than BPA and BPB. In in vivo studies, exposure to BPA (0.5 μg/kg·bw/day) on PND 10-40 caused oxidative stress and inflammation in rat hippocampus, disrupted neuronal morphogenesis and neurotransmitter homeostasis, ultimately impaired spatial memory of rats. Males are more sensitive to BPA exposure than females. Both in vivo and in vitro studies indicated that EGCG, a phytoestrogen, can alleviate BPA-induced neurotoxicity. Taken together, low-doses BPA exposure sex-specifically disrupted neurodevelopment and further impaired learning and memory ability in rats, which may be mediated by GPER. Promisingly, EGCG effectively mitigated the BPA-induced neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiheng Gui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yajuan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Youling Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
6
|
Zhang W, Teng M, Yan J, Chen L. Study effect and mechanism of levofloxacin on the neurotoxicity of Rana nigromaculata tadpoles exposed to imidacloprid based on the microbe-gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162098. [PMID: 36764551 DOI: 10.1016/j.scitotenv.2023.162098] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Aquatic organisms may be simultaneously exposed to antibiotics and pesticides. After levofloxacin (LVFX), imidacloprid (IMI) exposure and co-exposure at environmental levels, we found LVFX and IMI had antagonistic effect on the neurotoxicity of tadpoles. IMI-induced neurotoxicity on tadpoles can be explained by oxidative stress and hormone levels in some degree. By regulating ornithine, l-asparagine, putrescine and tryptamine in the intestine, LVFX affected glutathione metabolism, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, tyrosine metabolism and aminoacyl tRNA biosynthesis, so then eased the neurotoxicity caused by IMI. More interestingly, Fusobacteriota and Cetobacterium might play an important role on easing the neurotoxicity caused by IMI. In addition, LVFX might have a laxation effect on the increased relative abundance of Bacteroidota caused by IMI. In conclusion, IMI not only affected oxidative stress and hormone levels in the brain, but also affected the synthesis of neurotransmitters in the intestine by regulating intestinal microbiota. In LVFX and IMI co-exposed groups, LVFX alleviated the neurotoxicity caused by IMI through regulating the intestinal microbiota, showing as an antagonistic effect. Our results provided a new perspective for aquatic ecological risk assessment under co-exposure of antibiotics and pesticides.
Collapse
Affiliation(s)
- Wenjun Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Chen
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Karvandi MS, Sheikhzadeh Hesari F, Aref AR, Mahdavi M. The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation. Front Cell Neurosci 2023; 17:1105247. [PMID: 36950516 PMCID: PMC10025411 DOI: 10.3389/fncel.2023.1105247] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Neuronal loss is one of the striking causes of various central nervous system (CNS) disorders, including major neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS). Although these diseases have different features and clinical manifestations, they share some common mechanisms of disease pathology. Progressive regional loss of neurons in patients is responsible for motor, memory, and cognitive dysfunctions, leading to disabilities and death. Neuronal cell death in neurodegenerative diseases is linked to various pathways and conditions. Protein misfolding and aggregation, mitochondrial dysfunction, generation of reactive oxygen species (ROS), and activation of the innate immune response are the most critical hallmarks of most common neurodegenerative diseases. Thus, endoplasmic reticulum (ER) stress, oxidative stress, and neuroinflammation are the major pathological factors of neuronal cell death. Even though the exact mechanisms are not fully discovered, the notable role of mentioned factors in neuronal loss is well known. On this basis, researchers have been prompted to investigate the neuroprotective effects of targeting underlying pathways to determine a promising therapeutic approach to disease treatment. This review provides an overview of the role of ER stress, oxidative stress, and neuroinflammation in neuronal cell death, mainly discussing the neuroprotective effects of targeting pathways or molecules involved in these pathological factors.
Collapse
Affiliation(s)
- Mohammad Sobhan Karvandi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Amir Reza Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Majid Mahdavi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- *Correspondence: Majid Mahdavi
| |
Collapse
|
8
|
Sevastre-Berghian AC, Casandra C, Gheban D, Olteanu D, Olanescu Vaida Voevod MC, Rogojan L, Filip GA, Bâldea I. Neurotoxicity of Bisphenol A and the Impact of Melatonin Administration on Oxidative Stress, ERK/NF-kB Signaling Pathway, and Behavior in Rats. Neurotox Res 2022; 40:1882-1894. [PMID: 36515867 DOI: 10.1007/s12640-022-00618-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) exposure can be associated with neurodevelopmental disorders due to impairment of cell proliferation and synaptic development. Our study evaluated the effects of melatonin (MEL) on ambulatory activity, lipid peroxidation, cytokines, ERK/NF-kB signaling pathway in the hippocampus and frontal lobe, and histopathological changes in the hippocampus of the BPA-treated rats. The animals were divided into 4 groups: control, BPA, BPA + MEL I, and BPA + MEL II. MEL I (20 mg/kg b.w.) and MEL II (40 mg/kg b.w.) were orally administered for 28 days. On the 29th day, BPA (1 mg/kg b.w.) was intraperitoneally administered, and, after 24 h, an open field test (OFT) and an elevated plus maze (EPM) were conducted. The results showed that the MEL II group made significantly more entries in the open arms of EPM, traveled significantly greater distance, and spent more time in the central part of OFT. Malondialdehyde levels were diminished by MEL II in the hippocampus and by MEL I in the frontal lobe. In the hippocampus, the MAPK level was significantly lowered by both doses of MEL (p < 0.05) while in the frontal lobe, only MEL II reduced the MAPK activation. MEL I and II significantly decreased the γH2AX and upregulated the NFkB and pNFkB expressions in the hippocampus while MEL II downregulated the MCP1 expression. Both doses of MEL attenuated the BPA-evoked histopathological alterations in the hippocampus. These data indicate that MEL can mediate the neuroprotection against BPA-induced neurotoxicity and improves behavioral changes suggesting a real potential as a protective agent in brain toxicity.
Collapse
Affiliation(s)
- Alexandra C Sevastre-Berghian
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006, Cluj-Napoca-Napoca, Romania
| | - Cristina Casandra
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006, Cluj-Napoca-Napoca, Romania
| | - Dan Gheban
- Department of Morphopathology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400006, Cluj-Napoca-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006, Cluj-Napoca-Napoca, Romania
| | | | - Liliana Rogojan
- Department of Morphopathology, District Hospital, 3-5 Clinicilor Street, 400006, Cluj-Napoca Napoca, Romania
| | - Gabriela A Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006, Cluj-Napoca-Napoca, Romania.
| | - Ioana Bâldea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006, Cluj-Napoca-Napoca, Romania
| |
Collapse
|
9
|
Haridevamuthu B, Guru A, Murugan R, Sudhakaran G, Pachaiappan R, Almutairi MH, Almutairi BO, Juliet A, Arockiaraj J. Neuroprotective effect of Biochanin a against Bisphenol A-induced prenatal neurotoxicity in zebrafish by modulating oxidative stress and locomotory defects. Neurosci Lett 2022; 790:136889. [PMID: 36179902 DOI: 10.1016/j.neulet.2022.136889] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Exogenous toxicants cause oxidative stress and damage to brain cells, resulting in inflammation. Neuroinflammation is important in the pathobiology of various neurological illnesses, including Alzheimer's disease (AD). In this context, Bisphenol A (BPA), a common toxin, causes oxidative damage and has been linked to neurological problems. An O-methylated isoflavone known as Biochanin A (5,7-dihydroxy-4'-methoxy-isoflavone, BCA) is considered to be a phytoestrogen, which is abundant in some legume plants and soy which have preventive effects against cancer, osteoporosis, menopausal symptoms and oxidative stress. However, the mechanism by which BCA protected the prenatal neurological stress are not known. So that, in this study we investigated the BCA neuroprotective effect against BPA-induced neuroinflammation in zebrafish embryo models. For this study, fertilized zebrafish embryos are exposed to BPA (1 µM) with or without BCA. Our finding suggested that BCA co-exposure prevented the depletion of antioxidant defense enzymes by BPA and reduced the production of intracellular ROS production, superoxide anion (O2-), lipid peroxidation (LPO), lactate dehydrogenase (LDH) and nitric oxide (NO) levels in the head that aided in safeguarding neuronal development. Baseline locomotion was rendered and a total distance was calculated to assess the motor function. Exposure to BCA increased acetylcholinestrase (AChE) and improved motor neuron functions. It also reduced the pro-inflammatory response expression and prevented neuroinflammation. Our study suggests that BCA has a positive role in the attenuation or amelioration of neuronal oxidative damage and locomotory behaviour induced by BPA.
Collapse
Affiliation(s)
- B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, University Station A4800, Austin TX 78712, USA
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
10
|
Inhibitory Effect of Trihydroxy Isoflavone on Neuronal Apoptosis in Natural Aging Rats. DISEASE MARKERS 2022; 2022:4688203. [PMID: 36046381 PMCID: PMC9420620 DOI: 10.1155/2022/4688203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022]
Abstract
Objective To explore the impact of genistein (Gen) on the apoptosis of neuronal cells in naturally aged rats and its mechanism. Methods Fifty SD male rats were allocated into five groups at random, including youth group (3M group), natural aging group (24M group), and Gen low-, medium-, and high-dose groups. Starting from 18 months of age, Gen 10, 30, and 60 mg-kg−1 were administered via gavage to the Gen low-, medium-, and high-dose groups, respectively, while the rats in the natural aging group was given saline by gavage until 24 months of age, and the drug was stopped for 1 d per week for 6 months. The protein expression of target genes was examined using western blotting. Results In contrast to the 3M group, the 24M group rats showed disturbed neuronal cell arrangement and massive cell degeneration. After 6 months of Gen intervention, in contrast to the 24M group, the neural cell pathology in the CA3 area of the hippocampus improved and cell apoptotic decreased observably. In contrast to the 3M group, the protein expression of c-Jun amino-terminal kinase (p-JNK), C/EBP homologous protein (CHOP), inflammatory vesicle 3-associated factor (NLRP3), cysteine protease-1 (Caspase-1), and apoptosis-related punctate protein (ASC) and downstream inflammatory factors in the hippocampus was obviously increased in the 24M group. In contrast to the 24M group, the protein expression of p-JNK, CHOP, NLRP3, Caspase-1, and ASC and downstream inflammatory factors in the hippocampus was observably declined in Gen groups. Conclusion Gen has a protective effect on hippocampal neurons in aging rat brain tissue via the inhibition of the ERS apoptotic signaling pathway and NLRP3 inflammatory vesicle activation.
Collapse
|
11
|
Rodríguez‐Izquierdo I, Sepúlveda‐Crespo D, Lasso JM, Resino S, Muñoz‐Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1774. [PMID: 35018739 PMCID: PMC9285063 DOI: 10.1002/wnan.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Although a wide variety of topical microbicides provide promising in vitro and in vivo efficacy, most of them failed to prevent sexual transmission of human immunodeficiency virus type 1 (HIV-1) in human clinical trials. In vitro, ex vivo, and in vivo models must be optimized, considering the knowledge acquired from unsuccessful and successful clinical trials to improve the current gaps and the preclinical development protocols. To date, dendrimers are the only nanotool that has advanced to human clinical trials as topical microbicides to prevent HIV-1 transmission. This fact demonstrates the importance and the potential of these molecules as microbicides. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV-1 that disturb HIV-1 entry. Herein, the most significant advancements in topical microbicide development, trying to mimic the real-life conditions as closely as possible, are discussed. This review also provides the preclinical assays that anionic dendrimers have passed as microbicides because they can improve current antiviral treatments' efficacy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
| | - Daniel Sepúlveda‐Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Ma Ángeles Muñoz‐Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Spanish HIV HGM BioBankMadridSpain
- Section of Immunology, Laboratorio InmunoBiología MolecularHospital General Universitario Gregorio Marañón (HGUGM)MadridSpain
| |
Collapse
|
12
|
Tao S, Yang Y, Fan Y, Chu K, Sun J, Wu Q, Wang A, Wan J, Tian H. Melatonin protects against nonylphenol caused pancreatic β-cells damage through MDM2-P53-P21 axis. Toxicol Res (Camb) 2022; 11:391-401. [PMID: 35782637 PMCID: PMC9244227 DOI: 10.1093/toxres/tfac016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/07/2022] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Nonylphenol (NP) is an endocrine disrupting chemical, which widely exists in environment and can result in multiple system dysfunction. Pancreas as one of the most important organs is sensitive to NP, while the detail toxic effect is still less studied. Previously, we unveiled nonylphenol causes pancreatic damage in rats, herein, we further explore the potential mechanism and seek protection strategy in vitro. Insulinoma (INS-1) cells exposed to NP were observed to suffer oxidative stress and mitochondrial dysfunction, as reflected by the abnormal levels of reactive oxygen species, malonic dialdehyde, superoxide dismutase, Ca2+, and mitochondrial membrane potential. Melatonin (MT) was found to alleviate NP-induced mitochondrial dysfunction and oxidative stress, further inhibit apoptosis and restore pancreas function. Mechanically, MT induced the MDM2-P53-P21 signaling, which upregulated the Nrf2 signaling pathway. In summary, our study clarified NP-induced INS-1 cells mitochondrial dysfunction and oxidative stress, which could be ameliorated by MT through MDM2-P53-P21 axis.
Collapse
Affiliation(s)
- Shasha Tao
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
- Department of Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Youjing Yang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yayun Fan
- Yancheng First People’s Hospital, Yancheng, P. R. China
| | - Kaimiao Chu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jiaojiao Sun
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qianqian Wu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Aiqing Wang
- Department of Experimental Center, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jianmei Wan
- Department of Experimental Center, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Hailin Tian
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
- Department of Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
13
|
Mączka W, Grabarczyk M, Wińska K. Can Antioxidants Reduce the Toxicity of Bisphenol? Antioxidants (Basel) 2022; 11:antiox11020413. [PMID: 35204295 PMCID: PMC8869647 DOI: 10.3390/antiox11020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
BPA is still the subject of extensive research due to its widespread use, despite its significant toxicity resulting not only from its negative impact on the endocrine system but also from disrupting the organism’s oxidative homeostasis. At the molecular level, bisphenol A (BPA) causes an increased production of ROS and hence a change in the redox balance, mitochondrial dysfunction, and modulation of cell signaling pathways. Importantly, these changes accumulate in animals and humans, and BPA toxicity may be aggravated by poor diet, metabolic disorders, and coexisting diseases. Accordingly, approaches using antioxidants to counteract the negative effects of BPA are being considered. The preliminary results that are described in this paper are promising, however, it should be emphasized that further studies are required to determine the optimal dosage and treatment regimen to counteract BPA toxicity. It also seems necessary to have a more holistic approach showing, on the one hand, the influence of BPA on the overall human metabolism and, on the other hand, the influence of antioxidants in doses that are acceptable with the diet on BPA toxicity. This is due in part to the fact that in many cases, the positive effect of antioxidants in in vitro studies is not confirmed by clinical studies. For this reason, further research into the molecular mechanisms of BPA activity is also recommended.
Collapse
|
14
|
Liu L, Liu X, Zhao L, Liu Y. 1,8-cineole alleviates bisphenol A-induced apoptosis and necroptosis in bursa of Fabricius in chicken through regulating oxidative stress and PI3K/AKT pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112877. [PMID: 34634738 DOI: 10.1016/j.ecoenv.2021.112877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA), an important chemical raw material, is now a ubiquitous environmental contaminant. As an endocrine disruptor similar to estrogen, BPA increases the risk of various metabolic and chronic diseases. BPA has immunotoxicity to humans and animals. 1,8-cineole (CIN) is a plant-derived monoterpene with antioxidant and antiapoptosis actions. However, there are no reports about whether CIN could antagonize the BPA-induced apoptosis and necroptosis in bursa of Fabricius (BF) of chicken. This study was to elucidate the ameliorative mechanism of CIN on the apoptosis and necroptosis in BF induced by BPA. 120 broilers (1-day-old) were randomly divided into four groups: control group, CIN group, CIN and BPA co-treatment group, and BPA group. TUNEL analysis results, histopathological variations, and the overexpression of proapoptosis biomakers (Caspase 3, Bax, Cyt-c, and p53) and necroptosis pathway-related factors (RIPK1, RIPK3, MLKL, and FADD) indicated that BPA exposure induced the apoptosis and necroptosis in chicken BF. Moreover, BPA treatment elevated the levels of oxidative stress indexes (MDA, iNOS, and NO) and weaken antioxidases activity (SOD, GPx, and CAT) and total antioxidant capacity in chicken BF. BPA administration also lessened the expression of PI3K and AKT and promoted HSPs (HSP27, HSP40, HSP60, and HSP70) activation. whereas CIN supplementation prominently mitigated BPA-caused these changes and the apoptosis and necroptosis damages. In brief, this study illuminated that CIN could protect the chicken BF against BPA-induced apoptosis and necroptosis through restraining oxidative stress and activating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Lili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China.
| | - Xiangling Liu
- The Second Clinical Medical School, Harbin Medical University, Harbin 150086, PR China
| | - Liangyou Zhao
- Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Yuan Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| |
Collapse
|
15
|
Ebrahimi R, Shokrzadeh M, Ghassemi Barghi N. Effects of melatonin on the Bisphenol-A- induced cytotoxicity and genetic toxicity in colon cancer cell lines, normal gingival cell lines, and bone marrow stem cell lines. Cancer Inform 2021; 20:11769351211056295. [PMID: 34819716 PMCID: PMC8606939 DOI: 10.1177/11769351211056295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/09/2021] [Indexed: 12/02/2022] Open
Abstract
Bisphenol-A (BPA) is a synthetic chemical that has widely been used in the production of polycarbonate plastic and epoxy resins in the manufacture of consumer products. The most common path of human exposure to BPA is by oral intake that involves genotoxicity, oxidative stress, endocrine disruption, mutagenicity, and carcinogenicity in both in vitro and in vivo models. Melatonin is known as a free-radical scavenger and a powerful antioxidant agent. This study aimed to investigate the effects of melatonin on viability and genetic disorders of normal Human Gingival Fibroblasts (HGF), colon cancer (MKN45), and bone marrow stem cell (MSC) lines exposed to BPA. For this purpose, MTT and Comet assays were performed to evaluate the cytotoxicity and genotoxicity properties of BPA and the role of melatonin. The results showed that BPA exposure resulted in increased oxidative stress parameters including MDA and ROS, and decreased GSH content. The current study demonstrated the cytotoxicity and genotoxicity effects of BPA and the protective role of melatonin in preventing cytotoxicity and DNA damage are induced by BPA.
Collapse
Affiliation(s)
- Rouya Ebrahimi
- Department of Toxicology and Pharmacology, Pharmaceutical Research Center, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Pharmaceutical Research Center, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Sari, Iran
| | - Nasrin Ghassemi Barghi
- Department of Toxicology and Pharmacology, Pharmaceutical Research Center, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Sari, Iran
| |
Collapse
|
16
|
Zhang Y, Li S, Wu J, Peng Y, Bai J, Ning B, Wang X, Fang Y, Han D, Ren S, Li S, Chen R, Li K, Du H, Gao Z. The orphan nuclear receptor Nur77 plays a vital role in BPA-induced PC12 cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112026. [PMID: 33582411 DOI: 10.1016/j.ecoenv.2021.112026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a typical environmental endocrine disruptor that can migrate into organisms through skin contact, breathing, diet and various other approaches. The reproductive toxicity and neurotoxicity of BPA has been confirmed by several toxicological studies. However, the neurotoxicity of BPA is still controversial. In the present study, we used PC12 cells as a model to investigate the mechanism of BPA-induced neuronal apoptosis. BPA exposure reduced cell viability, altered cell morphology and aggravated intracellular Lactate dehydrogenase (LDH) release, intracellular Ca2+ concentration, Reactive oxygen species (ROS) levels, apoptosis and the reduction in the mitochondrial transmembrane potential (ΔΨm). Moreover, the results of the Western blot (WB) and Real-time quantitative polymerase chain reaction (RT-qPCR) assays indicated that the expression levels of Nur77 in the BPA group were down-regulated and accompanied by the downregulation of the NF-κb/Bcl-2 proteins and the upregulation of cleaved-caspase 3, which is a marker of apoptosis. However, these changes were significantly reversed with the upregulation of the Nur77 protein by introducing plasmids carrying the nur77 gene. These results indicated that BPA-induced apoptosis was closely related to Nur77-mediated inhibition of the NF-κb/Bcl-2 pathway.
Collapse
Affiliation(s)
- Yingchun Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China; Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Shuang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China; Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin 300072, PR China.
| | - Jin Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Yuan Peng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Jialei Bai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Baoan Ning
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Dianpeng Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Shuyue Ren
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Sen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Ruipeng Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Hongwei Du
- Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Zhixian Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China.
| |
Collapse
|