1
|
Yin JH, Horzmann KA. Embryonic Zebrafish as a Model for Investigating the Interaction between Environmental Pollutants and Neurodegenerative Disorders. Biomedicines 2024; 12:1559. [PMID: 39062132 PMCID: PMC11275083 DOI: 10.3390/biomedicines12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollutants have been linked to neurotoxicity and are proposed to contribute to neurodegenerative disorders. The zebrafish model provides a high-throughput platform for large-scale chemical screening and toxicity assessment and is widely accepted as an important animal model for the investigation of neurodegenerative disorders. Although recent studies explore the roles of environmental pollutants in neurodegenerative disorders in zebrafish models, current knowledge of the mechanisms of environmentally induced neurodegenerative disorders is relatively complex and overlapping. This review primarily discusses utilizing embryonic zebrafish as the model to investigate environmental pollutants-related neurodegenerative disease. We also review current applicable approaches and important biomarkers to unravel the underlying mechanism of environmentally related neurodegenerative disorders. We found embryonic zebrafish to be a powerful tool that provides a platform for evaluating neurotoxicity triggered by environmentally relevant concentrations of neurotoxic compounds. Additionally, using variable approaches to assess neurotoxicity in the embryonic zebrafish allows researchers to have insights into the complex interaction between environmental pollutants and neurodegenerative disorders and, ultimately, an understanding of the underlying mechanisms related to environmental toxicants.
Collapse
Affiliation(s)
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
2
|
Abdelnour SA, Naiel MAE, Said MB, Alnajeebi AM, Nasr FA, Al-Doaiss AA, Mahasneh ZMH, Noreldin AE. Environmental epigenetics: Exploring phenotypic plasticity and transgenerational adaptation in fish. ENVIRONMENTAL RESEARCH 2024; 252:118799. [PMID: 38552831 DOI: 10.1016/j.envres.2024.118799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Epigenetics plays a vital role in the interaction between living organisms and their environment by regulating biological functions and phenotypic plasticity. Considering that most aquaculture activities take place in open or natural habitats that are vulnerable to environmental changes. Promising findings from recent research conducted on various aquaculture species have provided preliminary evidence suggesting a link between epigenetic mechanisms and economically valuable characteristics. Environmental stressors, including climate changes (thermal stress, hypoxia, and water salinity), anthropogenic impacts such as (pesticides, crude oil pollution, nutritional impacts, and heavy metal) and abiotic factors (infectious diseases), can directly trigger epigenetic modifications in fish. While experiments have confirmed that many epigenetic alterations caused by environmental factors have plastic responses, some can be permanently integrated into the genome through genetic integration and promoting rapid transgenerational adaptation in fish. These environmental factors might cause irregular DNA methylation patterns in genes related to many biological events leading to organs dysfunction by inducing alterations in genes related to oxidative stress or apoptosis. Moreover, these environmental issues alter DNA/histone methylation leading to decreased reproductive competence. This review emphasizes the importance of understanding the effects of environmentally relevant issues on the epigenetic regulation of phenotypic variations in fish. The goal is to expand our knowledge of how epigenetics can either facilitate or hinder species' adaptation to these adverse conditions. Furthermore, this review outlines the areas that warrant further investigation in understanding epigenetic reactions to various environmental issues.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia; Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
| | - Afnan M Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fahd A Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
3
|
Geng H, An Q, Song J, He D, Han H, Wang L. Cadmium-induced global DNA hypermethylation promoting mitochondrial dynamics dysregulation in hippocampal neurons. ENVIRONMENTAL TOXICOLOGY 2024; 39:2043-2051. [PMID: 38095104 DOI: 10.1002/tox.24083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Abstract
Environmental cadmium exposure during pregnancy or adolescence can cause neurodevelopmental toxicity, lead to neurological impairment, and reduce cognitive abilities, such as learning and memory. However, the mechanisms by which cadmium causes neurodevelopmental toxicity and cognitive impairment are still not fully elucidated. This study used hippocampal neurons cultured in vitro to observe the impact of cadmium exposure on mitochondrial dynamics and apoptosis. Exposure to 5 μM cadmium causes degradation of hippocampal neuron cell bodies and axons, morphological destruction, low cell viability, and apoptosis increase. Cadmium exposure upregulates the expression of mitochondrial fission proteins Drp1 and Fis1, reduces the expression of mitochondrial fusion-related proteins MFN1, MFN2, and OPA1, as well as reduces the expression of PGC-1a. Mitochondrial morphology detection demonstrated that cadmium exposure changes the morphological structure of mitochondria in hippocampal neurons, increasing the number of punctate and granular mitochondria, reducing the number of tubular and reticular mitochondria, decreasing mitochondrial mass, dissipating mitochondrial membrane potential (ΔΨm), and reducing adenosine triphosphate (ATP) production. Cadmium exposure increases the global methylation level of the genome and upregulates the expression of DNMT1 and DNMT3α in hippocampal neurons. 5-Aza-CdR reduces cadmium-induced genome methylation levels in hippocampal neurons, increases the number of tubular and reticular mitochondria, and promotes cell viability. In conclusion, cadmium regulates the expression of mitochondrial dynamics-related proteins by increasing hippocampal neuron genome methylation, changing mitochondrial morphology and function, and exerting neurotoxic effects.
Collapse
Affiliation(s)
- Huixia Geng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Qihang An
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Jie Song
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Dongling He
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Huimin Han
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Lai Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
- School of Life Science, Henan University, Kaifeng, Henan Province, People's Republic of China
| |
Collapse
|
4
|
Tian S, Sun W, Sun X, Yue Y, Jia M, Huang S, Zhou Z, Li L, Diao J, Yan S, Zhu W. Intergenerational reproductive toxicity of parental exposure to prothioconazole and its metabolite on offspring and epigenetic regulation associated with DNA methylation in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 173:107830. [PMID: 36805811 DOI: 10.1016/j.envint.2023.107830] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/22/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Prothioconazole (PTC) is a widely used agricultural fungicide, and its parent and metabolite prothioconazole-desthio (dPTC) have been detected in diverse environmental media. This study was aimed at investigating the gender-dependent effects on adult zebrafish reproduction and intergenerational effects on offspring development following parental exposure to PTC and dPTC. The results showed that after the adult zebrafish (F0) was exposed to 0.5 and 10 μg/L PTC and dPTC for 21 days, the fertility and gametogenesis of female zebrafish were decreased more significantly than that of male zebrafish. After that, three fecundity tests were conducted in the exposure period to explore the development endpoints of F1 embryos/larvae without further treatment with PTC and dPTC exposure. However, PTC and dPTC exposure did lead to abnormal development of F1 embryos, including delayed hatching, shortened body length, abnormal development and significant changes in locomotor behavior. These changes were related to the abnormal expression of sex hormones and the regulation of DNA methylation in F0 fish. In a word, the results of this study showed that parental PTC and dPTC interference have sex-dependent reproductive toxicity on F0 zebrafish, which may be passed on to the next generation through epigenetic modification involving DNA methylation, resulting in alternations in growth phenotype of offspring.
Collapse
Affiliation(s)
- Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yifan Yue
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Elkin ER, Higgins C, Aung MT, Bakulski KM. Metals Exposures and DNA Methylation: Current Evidence and Future Directions. Curr Environ Health Rep 2022; 9:673-696. [PMID: 36282474 PMCID: PMC10082670 DOI: 10.1007/s40572-022-00382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF THE REVIEW Exposure to essential and non-essential metals is widespread. Metals exposure is linked to epigenetic, particularly DNA methylation, differences. The strength of evidence with respect to the metal exposure type, timing, and level, as well as the DNA methylation association magnitude, and reproducibility are not clear. Focusing on the most recent 3 years, we reviewed the human epidemiologic evidence (n = 26 studies) and the toxicologic animal model evidence (n = 18 studies) for associations between metals exposure and DNA methylation. RECENT FINDINGS In humans, the greatest number of studies focused on lead exposure, followed by studies examining cadmium and arsenic. Approximately half of studies considered metals exposure during the in utero period and measured DNA methylation with the genome-wide Illumina arrays in newborn blood or placenta. Few studies performed formal replication testing or meta-analyses. Toxicology studies of metals and epigenetics had diversity in model systems (mice, rats, drosophila, tilapia, and zebrafish were represented), high heterogeneity of tissues used for DNA methylation measure (liver, testis, ovary, heart, blood, brain, muscle, lung, kidney, whole embryo), and a variety of technologies used for DNA methylation assessment (global, gene specific, genome-wide). The most common metals tested in toxicologic studies were lead and cadmium. Together, the recent studies reviewed provide the strongest evidence for DNA methylation signatures with prenatal metals exposures. There is also mounting epidemiologic evidence supporting lead, arsenic, and cadmium exposures with DNA methylation signatures in adults. The field of metals and DNA methylation is strengthened by the inclusion of both epidemiology and toxicology approaches, and further advancements can be made by coordinating efforts or integrating analyses across studies. Future advances in understanding the molecular basis of sequence specific epigenetic responses to metals exposures, methods for handling exposure mixtures in a genome-wide analytic framework, and pipelines to facilitate collaborative testing will continue to advance the field.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Cesar Higgins
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Zhou R, Lu G, Yan Z, Jiang R, Sun Y, Zhang P. Epigenetic mechanisms of DNA methylation in the transgenerational effect of ethylhexyl salicylate on zebrafish. CHEMOSPHERE 2022; 295:133926. [PMID: 35150701 DOI: 10.1016/j.chemosphere.2022.133926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, a 120-day whole-life cycle exposure and oviposition experiment on zebrafish with maternal and paternal mixed mating strategy was conducted to investigate the epigenetic mechanism of DNA methylation in ethylhexyl salicylate (EHS, 1, 10, 100 μg/L)-induced transgenerational effects. Results showed that EHS could induce the decrease of DNA methyltransferase 1 (DNMT1) activity and average global DNA methylation level in maternal parents and the increase of the above indexes in paternal parents, while the change of glycine N-methyltransferase activity was opposite to DNMT1. The average global DNA methylation levels were significantly increased in the offsprings of both parents exposed and father-only exposed to EHS, suggesting that EHS-induced epigenetic modifications may be stable and heritable. Hierarchical clustering analysis of promoter at different methylation sites showed that the DNA methylation pattern of offsprings were similar to that of the paternal parents, meaning that the offsprings may have inherited paternal DNA methylation pattern with eya2, pcdh2g5 and pcdh2g1 as key genes and lead to high locomotor activity in offsprings. KEGG pathway analysis showed that parental exposure to EHS may interfere with the central nervous system, insulin function system, melanogenesis system and the normal development of somatic axis of offsprings.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|