1
|
Ren M, Bai Y, Wang Y, Su J, Hou C, Zhang Y. Simultaneous removal of nitrate, manganese, zinc, and bisphenol a by manganese redox cycling system: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 407:131106. [PMID: 39004108 DOI: 10.1016/j.biortech.2024.131106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The manganese(Mn) redox cycling system in this work was created by combining Mn(IV)-reducing bacteria MFG10 with Mn(II)-oxidizing bacteria HY129. The biomanganese oxides (BMO) generated by strain HY129 were transformed by strain MFG10 to Mn(II), finishing the Mn redox cycling, in which nitrate (NO3--N) was converted to nitrite, which was further reduced to nitrogen gas. The system could achieve 85.7 % and 98.8 % elimination efficiencies of Mn(ⅠⅠ) and NO3--N, respectively, at Mn(ⅠⅠ) = 20.0 mg/L, C/N = 2.0, pH = 6.5, and NO3--N = 16.0 mg/L. The removal of bisphenol A (BPA) and zinc (Zn(II)) at 36 h reached 91.7 % and 89.7 % under the optimal condition, respectively. Furthermore, the Mn redox cycling system can reinforce the metabolic activity and electron transfer activity of microorganisms. The findings showed that the adsorption by bioprecipitation throughout the Mn cycling was responsible for the elimination of Zn(II) and BPA.
Collapse
Affiliation(s)
- Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ying Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Doku ET, Sylverken AA, Belford JDE. Rhizosphere microbiome of plants used in phytoremediation of mine tailing dams. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1212-1220. [PMID: 38214673 DOI: 10.1080/15226514.2024.2301994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Rhizospheric microbial communities improve the effectiveness of hyperaccumulators in the phytoremediation of heavy metals. However, limited access to tailing dams and inadequate assessment of plants' phytoremediation potential limit the characterization of native accumulators, hindering the effectiveness of local remediation efforts. This study evaluates the heavy metal sequestration potentials of Pennisetum purpureum, Leucaena leucocephala, and Pteris vittata and their associated rhizospheric microbial communities at the Marlu and Pompora tailing dams in Ghana. The results indicate shoot hyperaccumulation of Cd (334.5 ± 6.3 mg/kg) and Fe (10,647.0 ± 12.6 mg/kg) in P. purpureum and L. leucocephala, respectively. Analysis of rhizospheric bacterial communities revealed the impact of heavy metal contamination on bacterial community composition, associating Fe and Cd hyperaccumulation with Bacillus, Arthrobacter, and Sphingomonas species. This study reports the hyperaccumulation potentials of L. leucocephala and P. purpureum enhanced by associated rhizosphere bacterial communities, suggesting their potential application as an environmentally friendly remediation process of heavy metals contaminated lands.
Collapse
Affiliation(s)
- Emmanuel Tetteh Doku
- Department of Pharmaceutical Science, Sunyani Technical University, Sunyani, Ghana
| | | | - J D Ebenezer Belford
- Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
Huang X, Nong X, Liang K, Chen P, Zhao Y, Jiang D, Xiong J. Efficient Mn(II) removal mechanism by Serratia marcescens QZB-1 at high manganese concentration. Front Microbiol 2023; 14:1150849. [PMID: 37180235 PMCID: PMC10172493 DOI: 10.3389/fmicb.2023.1150849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Manganese (Mn(II)) pollution has recently increased and requires efficient remediation. In this study, Serratia marcescens QZB-1, isolated from acidic red soil, exhibited high tolerance against Mn(II) (up to 364 mM). Strain QZB-1 removed a total of 98.4% of 18 mM Mn(II), with an adsorption rate of 71.4% and oxidation rate of 28.6% after incubation for 48 h. The strain synthesized more protein (PN) to absorb Mn(II) when stimulated with Mn(II). The pH value of the cultural medium continuously increased during the Mn(II) removal process. The product crystal composition (mainly MnO2 and MnCO3), Mn-O functional group, and element-level fluctuations confirmed Mn oxidation. Overall, strain QZB-1 efficiently removed high concentration of Mn(II) mainly via adsorption and showed great potential for manganese wastewater removal.
Collapse
Affiliation(s)
- Xuejiao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, China
- *Correspondence: Xuejiao Huang,
| | - Xiaofang Nong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Kang Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Pengling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Yi Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Daihua Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Wu R, Yao F, Li X, Shi C, Zang X, Shu X, Liu H, Zhang W. Manganese Pollution and Its Remediation: A Review of Biological Removal and Promising Combination Strategies. Microorganisms 2022; 10:2411. [PMID: 36557664 PMCID: PMC9781601 DOI: 10.3390/microorganisms10122411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Manganese (Mn), as a cofactor of multiple enzymes, exhibits great significance to the human body, plants and animals. It is also a critical raw material and alloying element. However, extensive employment for industrial purposes leads to its excessive emission into the environment and turns into a significant threat to the ecosystem and public health. This review firstly introduces the essentiality, toxicity and regulation of Mn. Several traditional physicochemical methods and their problems are briefly discussed as well. Biological remediation, especially microorganism-mediated strategies, is a potential alternative for remediating Mn-polluted environments in a cost-efficient and eco-friendly manner. Among them, microbially induced carbonate precipitation (MICP), biosorption, bioaccumulation, bio-oxidation are discussed in detail, including their mechanisms, pivotal influencing factors along with strengths and limitations. In order to promote bioremediation efficiency, the combination of different techniques is preferable, and their research progress is also summarized. Finally, we propose the future directions of Mn bioremediation by microbes. Conclusively, this review provides a scientific basis for the microbial remediation performance for Mn pollution and guides the development of a comprehensive competent strategy towards practical Mn remediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hengwei Liu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
5
|
Song F, Zhang G, Xu X, Polyak SW, Zhang K, Li H, Yang N. Role of intracellular energy metabolism in Mn(Ⅱ) removal by the novel bacterium Stenotrophomonas sp. MNB17. CHEMOSPHERE 2022; 308:136435. [PMID: 36113658 DOI: 10.1016/j.chemosphere.2022.136435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/07/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Microorganism-mediated Mn(Ⅱ) removal has gained increasing attention as a valuble bioremediation approach. In this study, a novel strain Stenotrophomonas sp. MNB17 - obtained from marine sediments - was found to show Mn(Ⅱ) removal efficiencies of 98.51-99.38% within 7 days and 92.24% within 20 days at Mn(Ⅱ) concentrations of 10-40 mM and 50 mM, respectively. On day 7, 80.44% of 50 mM Mn(Ⅱ) was oxidized to Mn(Ⅲ/Ⅳ), whereas only 2.11-2.86% of 10-40 mM Mn(Ⅱ) was oxidized. This difference in the proportion of Mn-oxides suggested that the strain MNB17 could remove soluble Mn(Ⅱ) via distinct mechanisms under different Mn(Ⅱ) concentrations. At 10 mM Mn(Ⅱ), indirect mechanisms were employed by strain MNB17 to remove Mn(Ⅱ). The sufficient energy generated by increased cellular respiration led to enhanced ammonification, and MnCO3 was the main component of the Mn-precipitates (97.27%). Meanwhile, intracellular fatty acids were degraded and served as an important carbon source for respiration. At 50 mM Mn(Ⅱ), most of the soluble Mn(Ⅱ) was oxidized, and Mn-oxides dominated the Mn-precipitates (80.44%). Mn(Ⅱ) oxidation likely contributed to electrons for energy production, as the down-regulation of respiratory pathways resulted in a deficit of electron supply, which warrants futher study. The exogenous addition of tricarboxylic acid cycle substrates (malate, α-ketoglutarate, oxaloacetate, succinate, and fumarate) was found to accelerate Mn(Ⅱ) removal as MnCO3 at a concentration of 50 mM. Overall, this study reports a novel strain MNB17 with the biotechnological potential of Mn(Ⅱ) removal and elucidates the function of cellular energy metabolism during the Mn(Ⅱ) removal process. In addition, it demonstrates the potential of aerobic respiration-related substrates in accelerating the removal of high concentrations of Mn(Ⅱ) for the first time.
Collapse
Affiliation(s)
- Fuhang Song
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Guoliang Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, 29 Xueyuan Road, Beijing, 100083, China
| | - Steven W Polyak
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5005, Australia
| | - Kai Zhang
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Honghua Li
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Na Yang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
6
|
Song F, Zhang G, Li H, Ma L, Yang N. Comparative transcriptomic analysis of Stenotrophomonas sp. MNB17 revealed mechanisms of manganese tolerance at different concentrations and the role of histidine biosynthesis in manganese removal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114056. [PMID: 36075124 DOI: 10.1016/j.ecoenv.2022.114056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/21/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Bacteria possess protective mechanisms against excess Mn(Ⅱ) to reduce its toxicity. Stenotrophomonas sp. MNB17 showed high Mn(Ⅱ) removal capacity (92.24-99.16 %) by forming Mn-precipitates (MnCO3 and Mn-oxides), whose Mn-oxides content increased with increasing Mn(Ⅱ) concentrations (10-50 mM). Compared with 0 mM Mn(Ⅱ)-stressed cells, transcriptomic analysis identified genes with the same transcriptional trends in 10 mM and 50 mM Mn(Ⅱ)-stressed cells, including genes involved in metal transport, cell envelope homeostasis, and histidine biosynthesis, as well as genes with different transcriptional trends, such as those involved in oxidative stress response, glyoxylate cycle, electron transport, and protein metabolism. The upregulation of histidine biosynthesis and oxidative stress responses were the most prominent features of these metabolisms under Mn(Ⅱ) stress. We confirmed that the increased level of reactive oxygen species was one of the reasons for the increased Mn-oxides formation at high Mn(Ⅱ) concentrations. Metabolite analysis indicated that the enhanced histidine biosynthesis rather than the tricarboxylic acid cycle resulted in an elevated level of α-ketoglutarate, which helped eliminate reactive oxygen species. Consistent with these results, the exogenous addition of histidine significantly reduced the production of reactive oxygen species and Mn-oxides and enhanced the removal of Mn(Ⅱ) as MnCO3. This study is the first to correlate histidine biosynthesis, reactive oxygen species, and Mn-oxides formation at high Mn(Ⅱ) concentrations, providing novel insights into the molecular regulatory mechanisms associated with Mn(Ⅱ) removal in bacteria.
Collapse
Affiliation(s)
- Fuhang Song
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Guoliang Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Honghua Li
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Australia; School of Environment and Science, Griffith University, Australia
| | - Na Yang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
7
|
Li H, Wu Y, Tang Y, Fang B, Luo P, Yang L, Jiang Q. A manganese-oxidizing bacterium-Enterobacter hormaechei strain DS02Eh01: Capabilities of Mn(II) immobilization, plant growth promotion and biofilm formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119775. [PMID: 35843452 DOI: 10.1016/j.envpol.2022.119775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
While biogenic Mn oxides (BioMnOx) generated by Mn(II)-oxidizing bacteria (MOB) have attracted increasing attention, a MOB strain isolated from Mn-polluted sediments was identified and assigned as Enterobacter hormaechei DS02Eh01. Its Mn(II) immobilization activity, plant growth-promoting traits, and biofilm formation capability were investigated. The results showed that strain DS02Eh01 was found to be able to tolerate Mn(II) up to 122 mM. The strain immobilized Mn(II) in aquatic media mainly through extracellular adsorption, bio-oxidation and pH-induced precipitation as well as manganese oxidation. DS02Eh01-derived BioMnOx are negatively charged and have a larger specific surface area (86.70 m2/g) compared to the previously reported BioMnOx. The strain can immobilize Mn(II) at extreme levels, for instance, when it was exposed to 20 mM Mn(II), about 59% of Mn(II) were found immobilized and 17% of Mn(II) were converted to MnOx. The SEM and TEM observation revealed that the DS02Eh01-derived BioMnOx were aggregates doped with granules and microbial pellets. The precipitated Mn(II) and the Mn(III)/Mn(IV) oxides co-existed in BioMnOx, in which Mn(II) and Mn(IV) were found dominant with Mn(II) accounting for 49.6% and Mn(IV) accounting for 41.3%. DS02Eh01 possesses plant growth-promoting traits and biofilm formation capacity even under Mn(II) exposure. Mn(II) exposure at 5 mM was found to stimulate strain DS02Eh01 to form biofilms, from which, the extracted EPS was mainly composed of aromatic proteins. This study reveals that E. hormaechei strain DS02Eh01 possesses the potential in environmental ecoremediation via coupling processes of macrophytes extraction, biochemical immobilization and biosorption.
Collapse
Affiliation(s)
- Huilan Li
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Yu Wu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Yankui Tang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China.
| | - Bo Fang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Penghong Luo
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Luling Yang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Qiming Jiang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| |
Collapse
|
8
|
Deng S, An Q, Ran B, Yang Z, Xu B, Zhao B, Li Z. Efficient remediation of Mn 2+ and NH 4+-N in co-contaminated water and soil by Acinetobacter sp. AL-6 synergized with grapefruit peel biochar: Performance and mechanism. WATER RESEARCH 2022; 223:118962. [PMID: 35970107 DOI: 10.1016/j.watres.2022.118962] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Electrolysis manganese slag produced in industrial manganese production causes massive leachate containing heavy metal Mn2+ and inorganic NH4+-N, which causes serious hazard to the water body and soil. A cost-effective alternative to address the multiple pollution is urgently needed. This study investigated the synergy of grapefruit peel biochar (BC) and strain AL-6 to remediate Mn2+ and NH4+-N in sequencing batch bioreactor (SBR) and soil column. The results showed that, in SBR, under the condition of C/N 5, temperature 30°C, BC and strain AL-6 showed fabulous performance to remove Mn2+ (99.3%) and NH4+-N (97.7%). The coexisting ions Mg2+ and Ca2+ had no effects on the removal of Mn2+ and COD, however, 23.3% removal efficiency of NH4+-N was curtailed. Characterization found that the presence of MnCO3 confirmed the adsorption of Mn2+ by functional groups action, and gas chromatography indicated that BC and strain AL-6 promoted the reduction of N2O and organic carbon. In addition, BC and strain AL-6 helped to immobilize 799.41 mg L-1 of Mn2+ and 320 mg L-1 of NH4+-N after 45 d in the soil column. And the determination of TOC, CEC, pH, Eh, soil enzymatic activity (catalase and urease), and microbial diversity and abundance confirmed that BC and strain AL-6 increased the soil fertility and bioavailability of pollutants. Totally, BC and strain AL-6 possess great potential to remediate Mn2+ and NH4+-N pollution in water and soil.
Collapse
Affiliation(s)
- Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China.
| | - Binbin Ran
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zihao Yang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Bohan Xu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
9
|
Gao Z, Su J, Ali A, Wang X, Bai Y, Wang Y, Wang Z. Denitrification strategy of Pantoea sp. MFG10 coupled with microbial dissimilatory manganese reduction: Deciphering the physiological response based on extracellular secretion. BIORESOURCE TECHNOLOGY 2022; 355:127278. [PMID: 35545210 DOI: 10.1016/j.biortech.2022.127278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, the manganese (Mn) reduction-coupled denitrification strategy of dissimilatory Mn reducing bacteria was insightfully investigated. Different parameters (MnO2 level, pH, and temperature) were optimized by kinetic fitting to improve denitrification and Mn reduction effects. The 300 mg L-1 MnO2 addition achieved 98.72% NO3--N removal in 12 h, which was 54.62% higher than blank group without MnO2. Scale-up studies showed that the metabolic activity of the bacteria was effectively enhanced by the addition of MnO2. Besides the deepening of humification in the system, tryptophan-like protein and polysaccharide as potential electron donor precursors revealed remarkable contributions to the extracellular secretion-dependent denitrification process of DMRB. The effect of EPS on Mn reduction depends mainly on the capture of MnO2 by the LB-EPS layer versus its dissolution in the TB-EPS layer. Ultimately, the EPS possess a dual effect of accelerated denitrification and Mn reduction efficiency due to the enhanced EET process.
Collapse
Affiliation(s)
- Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xumian Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Yang Y, Ali A, Su J, Chang Q, Xu L, Su L, Qi Z. Phenol and 17β-estradiol removal by Zoogloea sp. MFQ7 and in-situ generated biogenic manganese oxides: Performance, kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128281. [PMID: 35066225 DOI: 10.1016/j.jhazmat.2022.128281] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The pollution of multifarious pollutants such as heavy metal, organic compounds, and nitrate are a hot research topic at present. In this study, the functions of Zoogloea sp. MFQ7 and its biological precipitation formed during bacterial manganese oxidation on the removal of phenol and 17β-estradiol (E2) were investigated. Strain MFQ7, a manganese-oxidizing bacteria, can remove 98.34% of phenol under pH of 7.1, a temperature of 30 ℃ and Mn2+ concentration of 24.34 mg L-1, additionally, the optimum E2 removal by strain MFQ7 was 100.00% at pH of 7.1, temperature of 28 ℃ and Mn2+ concentration of 28.45 mg L-1 by using response surface methodology (RSM) based on Box-Behnken design (BBD) model. The maximum adsorption capacity of bio-precipitation for phenol and E2 was 201.15 mg g-1 and 65.90 mg g-1, respectively. Furthermore, adsorption kinetics and isotherms analysis, XPS, FTIR spectra, Mn(III) trapping experiments elucidated chemical adsorption and Mn(III) oxidation contribute to the removal of phenol and E2 by biogenic manganese oxides. These findings indicated that the adsorption and oxidation of manganese are expected to be one of the effective means to remove these typical organic pollutants containing phenol and E2.
Collapse
Affiliation(s)
- Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lindong Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an 710055, China
| | - Zening Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an 710055, China
| |
Collapse
|
11
|
Gao Z, Ali A, Su J, Chang Q, Bai Y, Wang Y, Liu Y. Bioaugmented removal of 17β-estradiol, nitrate and Mn(II) by polypyrrole@corn cob immobilized bioreactor: Performance optimization, mechanism, and microbial community response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118896. [PMID: 35085648 DOI: 10.1016/j.envpol.2022.118896] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The coexistence of nitrate and endocrine substances (EDCs) in groundwater is of global concern. Herein, an efficient and stable polypyrrole@corn cob (PPy@Corn cob) bioreactor immobilized with Zoogloea sp. was designed for the simultaneous removal of 17β-estradiol (E2), nitrate and Mn(II). After 225 days of continuous operation, the optimal operating parameters and enhanced removal mechanism were explored, also the long-term toxicity and microbial communities response mechanisms under E2 stress were comprehensively evaluated. The results showed that the removal efficiencies of E2, nitrate, and Mn(II) were 84.21, 82.96, and 47.91%, respectively, at the optimal operating conditions with hydraulic retention time (HRT) of 8 h, pH of 6.5 and Mn(II) concentration of 20 mg L-1. Further increased of initial E2 (2 and 3 mg L-1) resulted in the inhibiting effect of denitrification and manganese oxidation, but excellent E2 removal efficiencies maintained, which were associated with the formation and continuous accumulation of biomanganese oxides (BMO). Characterization analysis of biological precipitation demonstrated that adsorption and redox conversion on the BMO surface played key roles in the removal of E2. In addition, different levels of E2 exposure are decisive factors in community evolution, and bioaugmented bacterial communities with Zoogloea as the core group can dynamically adapt to E2 stress. This study offers the possibility to better utilize microbial metabolism and to advance opportunities that depend on microbial physiology and material characterization applications.
Collapse
Affiliation(s)
- Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
12
|
Wang Y, Su J, Ali A, Chang Q, Bai Y, Gao Z. Enhanced nitrate, manganese, and phenol removal by polyvinyl alcohol/sodium alginate with biochar gel beads immobilized bioreactor: Performance, mechanism, and bacterial diversity. BIORESOURCE TECHNOLOGY 2022; 348:126818. [PMID: 35139430 DOI: 10.1016/j.biortech.2022.126818] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 05/17/2023]
Abstract
Water pollutants, such as nitrate, heavy metals, and organics have attracted attention due to their harms to environmental and biological health. A novel polyvinyl alcohol/sodium alginate with biochar (PVA/SA@biochar) gel beads immobilized bioreactor was established to remove nitrate, manganese, and phenol. The optimum conditions for preparing gel beads were studied by response surface methodology (RSM). Notably, the removal efficiencies of nitrate, Mn(II), and phenol were 94.64, 72.74, and 93.97% at C/N of 2.0; the concentrations of Mn(II) and phenol were 20 and 1 mg L-1, respectively. Moreover, addition of different concentrations of phenol significantly affected the components of dissolved organic matter, bacterial activity, and bioreactor performance. The biological manganese oxide (BMO) with three-dimensional petal-type structure produced during Mn(II) oxidation showed excellent adsorption capacity. The removal of phenol relied on a combination of biological action and adsorption processes. High-throughput analysis showed that Zoogloea sp. was the predominant bacterial group.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|