1
|
Xu X, Xu Z, Yang B, Yi K, He F, Sun A, Li J, Luo Y, Wang J. Assessing the Effects of Dietary Cadmium Exposure on the Gastrointestinal Tract of Beef Cattle via Microbiota and Transcriptome Profile. Animals (Basel) 2023; 13:3104. [PMID: 37835710 PMCID: PMC10571678 DOI: 10.3390/ani13193104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cadmium (Cd) is an environmental pollutant, widely existing in soil, and can be absorbed and accumulated by plants. Hunan Province exhibits the worst cadmium contamination of farmland in China. Ruminants possess an abundant microbial population in the rumen, which enables them to tolerate various poisonous plants. To investigate whether the rumen microbiota could respond to Cd and mitigate the toxicity of Cd-accumulated maize to ruminants, 6-month-old cattle were fed with 85.82% (fresh basis) normal whole-plant maize silage diet (CON, n = 10) or Cd-accumulated whole-plant maize silage diet (CAM, n = 10) for 107 days. When compared to the CON cattle, CAM cattle showed significantly higher gain-to-feed ratio and an increased total bacterial population in the rumen, but a decreased total bacterial population in the colon. CAM cattle had higher relative abundance of Prevotella and Lachnospiraceae ND3007 group in the rumen, and Lachnospiraceae NK4A136 group and Clostridia vadinBB60 group in the colon. Notably, microbial correlations were enhanced in all segments of CAM cattle, especially Peptostreptococcaceae in the jejunum. Transcriptome analysis revealed down-regulation of several immune-related genes in the rumen of CAM cattle, and differentially expressed genes in the rumen were mostly involved in immune regulation. These findings indicated that feeding Cd-accumulated maize diet with a Cd concentration of 6.74 mg/kg dry matter (DM) could stimulate SCFA-related bacteria in the rumen, induce hormesis to promote weight gain, and improve energy utilization of cattle.
Collapse
Affiliation(s)
- Xinxin Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.X.); (Z.X.); (B.Y.)
| | - Zebang Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.X.); (Z.X.); (B.Y.)
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.X.); (Z.X.); (B.Y.)
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (K.Y.); (F.H.); (A.S.); (J.L.)
| | - Fang He
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (K.Y.); (F.H.); (A.S.); (J.L.)
| | - Ao Sun
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (K.Y.); (F.H.); (A.S.); (J.L.)
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (K.Y.); (F.H.); (A.S.); (J.L.)
| | - Yang Luo
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.X.); (Z.X.); (B.Y.)
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (K.Y.); (F.H.); (A.S.); (J.L.)
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.X.); (Z.X.); (B.Y.)
| |
Collapse
|
2
|
Wu Y, An T, Gao Y, Kuang Q, Liu S, Liang L, Xu B, Zhang S, Deng X, Chen Y. Genotypic variation in the tolerance to moderate cadmium toxicity among 20 maize genotypes with contrasting root systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2618-2630. [PMID: 36321249 DOI: 10.1002/jsfa.12303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cadmium (Cd) contamination in farmland is a serious environmental and safety issue affecting plant growth, crop productivity, and human health. This study aimed to investigate genotypic variation in root morphology and Cd accumulations under moderate Cd stress among diverse maize genotypes. Twenty maize genotypes with contrasting root systems were assessed for Cd tolerance 39 days after transplanting (V6, six-leaf stage) under 20 μmol L-1 CdCl2 using a semi-hydroponic phenotyping platform in a glasshouse. RESULTS Cadmium stress significantly inhibited plant growth across all genotypes. Genotypic variation in response to Cd toxicity was apparent: shoot dry weight varied from 0.13 (genotype NS2020) to 0.35 g plant-1 (Dongke301) with deductions up to 63% compared with non-Cd treatment (CK). Root dry weight of 20 genotypes ranged from 0.06 (NS2020) to 0.18 g plant-1 (Dongke301) with a deduction up to 56%. Root length ranged from 2.21 (NS590b) to 9.22 m (Dongke301) with a maximal decline of 76%. Cadmium-treated genotypes generally had thicker roots and average diameter increased by 34% compared with CK. Genotypes had up to 3.25 and 3.50 times differences in shoot and root Cd concentrations, respectively. Principal component and cluster analyses assigned the 20 genotypes into Cd-tolerant (five genotypes) and Cd-sensitive (15 genotypes) groups. CONCLUSIONS Maize genotypes varied significantly in response to moderate Cd stress. Cadmium-tolerant genotypes optimized root morphology and Cd accumulation and distribution. This study could assist in the selection and breeding of new cultivars with improved adaptation to Cd-contaminated soil for food and feed or land remediation purposes. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujie Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Resources and Environment, Northwest A&F University, Yangling, China
| | - Tingting An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yamin Gao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Resources and Environment, Northwest A&F University, Yangling, China
| | - Qiqiang Kuang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Resources and Environment, Northwest A&F University, Yangling, China
| | - Shuo Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Resources and Environment, Northwest A&F University, Yangling, China
| | - Liyan Liang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- The UWA Institute of Agriculture & School of Agriculture and Environment, The University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Xu M, Yang L, Chen Y, Jing H, Wu P, Yang W. Selection of rice and maize varieties with low cadmium accumulation and derivation of soil environmental thresholds in karst. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114244. [PMID: 36326557 DOI: 10.1016/j.ecoenv.2022.114244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is considered the primary dietary toxic element. Previous studies have demonstrated significant differences in heavy metal accumulation among crop species. However, this information in karst areas with low heavy metal activity is missing. In this study, the uptake and accumulation characteristics of cadmium in soil-crop samples of group 504 in the core karst region of East Asia were analyzed. Cadmium low-accumulating maize and rice were screened using cluster and Pareto analytic methods. In addition, a new method, the species-sensitive distribution model (SSD), was proposed, which could be used to estimate the environmental threshold for cadmium in regional cropland. The results showed that both maize and rice soils in the research area were contaminated with varying degrees of cadmium. The total concentrations of cadmium ω(T-Cd) in maize and rice fields are 0.18-1.32 and 0.20-4.42 mg kg-1, respectively. The ω(T-Cd) of heavy metals in maize kernels and rice grains is 0.002-0.429 and 0.003-0.393 mg kg-1, respectively. The bioaccumulation factor (BCF) of cadmium in maize ranged from 0.0079 to 0.9701, with a coefficient of variation of 1.71; the BCF of cadmium in rice ranged from 0.0074 to 0.1345, with a coefficient of variation of 0.99. According to cluster and Pareto analyses, the maize crop varieties with low cadmium accumulation suitable for local cultivation were screened as JHY809, JDY808, AD778, SN3H and SY13, and the rice varieties were DMY6188, GY725, NY6368, SY451 and DX4103. In addition, the environmental cadmium threshold ranges of 0.30-10.05 mg kg-1 and 0.89-24.39 mg kg-1 for maize and rice soils, respectively, were deduced in this study. This threshold will ensure that 5-95% of maize and rice will not be contaminated with cadmium in the soil.
Collapse
Affiliation(s)
- Mengqi Xu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Liyu Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Yonglin Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Haonan Jing
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Wentao Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
4
|
Feed Safety and the Development of Poultry Intestinal Microbiota. Animals (Basel) 2022; 12:ani12202890. [PMID: 36290275 PMCID: PMC9598862 DOI: 10.3390/ani12202890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Intensive gut colonisation of animals starts immediately after birth or hatch. Oral route of colonisation, and consequently the first feed, plays a significant role in the continual defining of the intestinal microbial community. The feed can influence colonisation in two ways: providing the microbial inoculum and providing the nutritional requirements that suit a specific type of microbes. In combination with environmental factors, feed shapes animal’s future health and performance from the first day of life. The objective of this review was to investigate feed safety aspects of animal nutrition from the gut colonisation aspect. Abstract The first feed offered to young chicks is likely the most important meal in their life. The complex gut colonisation process is determined with early exposure and during the first days of life before the microbial community is formed. Therefore, providing access to high-quality feed and an environment enriched in the beneficial and deprived of pathogenic microorganisms during this period is critical. Feed often carries a complex microbial community that can contain major poultry pathogens and a range of chemical contaminants such as heavy metals, mycotoxins, pesticides and herbicides, which, although present in minute amounts, can have a profound effect on the development of the microbial community and have a permanent effect on bird’s overall health and performance. The magnitude of their interference with gut colonisation in livestock is yet to be determined. Here, we present the animal feed quality issues that can significantly influence the microbial community development, thus severely affecting the bird’s health and performance.
Collapse
|
5
|
Pu S, Cai X, Wang W, Liu X, Li S, Fu J, Sun L, Ma J, Jiang M, Li X. NTA-assisted mineral element and lead transportation in Eremochloa ophiuroides (Munro) Hack. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20650-20664. [PMID: 34743308 DOI: 10.1007/s11356-021-17306-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) is one of the most toxic and harmful pollutants to the environment and human health. Centipedegrass (Eremochloa ophiuroides (Munro) Hack.), an excellent ground cover plant for urban plant communities, exhibits the outstanding lead tolerance and accumulation. Nitrilotriacetic acid (NTA) is an environmentally friendly chelating agent that strengthens phytoremediation. This study explored the effects of different NTA concentrations on the absorption and transportation of mineral elements and Pb in centipedegrass. Following exposure to Pb (500 μM) for 7 days in hydroponic nutrient solution, NTA increased root Mg, K, and Ca concentrations and shoot Fe, Cu, and Mg concentrations and significantly enhanced the translocation factors of mineral elements to the shoot. Although NTA notably decreased root Pb absorption and accumulation, it significantly enhanced Pb translocation factors, and the Pb TF value was the highest in the 2.0 mM NTA treatment. Furthermore, the shoot translocation of Pb and mineral elements was synergistic. NTA can support mineral element homeostasis and improve Pb translocation efficiency in centipedegrass. Regarding root radial transport, NTA (2.0 mM) significantly promoted Pb transport by the symplastic pathway under the treatments with low-temperature and metabolic inhibitors. Meanwhile, NTA increased apoplastic Pb transport at medium and high Pb concentrations (200-800 μM). NTA also enhanced the Pb radial transport efficiency in roots and thus assisted Pb translocation. The results of this study elucidate the effects of NTA on the absorption and transportation of mineral elements and Pb in plants and provide a theoretical basis for the practical application of the biodegradable chelating agent NTA in soil Pb remediation.
Collapse
Affiliation(s)
- Siyi Pu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wenjuan Wang
- Pengzhou Planning and Natural Resources Bureau, Pengzhou, Chengdu, 611130, Sichuan, China
| | - Xingke Liu
- Pengzhou Planning and Natural Resources Bureau, Pengzhou, Chengdu, 611130, Sichuan, China
| | - Shangguan Li
- Pengzhou Planning and Natural Resources Bureau, Pengzhou, Chengdu, 611130, Sichuan, China
| | - Jingyi Fu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|