1
|
Xu L, Chen S, Fu W, Lin X, Zhang F, Qin G, Yuan Z, Huang B. Environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin induces non-obstructive azoospermia: New insights from network toxicology, integrated machine learning, and biomolecular modeling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118173. [PMID: 40215689 DOI: 10.1016/j.ecoenv.2025.118173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/23/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVE As industrial pollution intensifies, global male semen quality has been declining at a rate of 2.64 % per year in the 21st century. Among the various types of infertility, non-obstructive azoospermia (NOA) is the most severe and is closely associated with exposure to environmental toxins. The molecular mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a typical persistent organic pollutant, induces NOA have yet to be systematically elucidated. METHODS This study employed the single-sample Gene Set Enrichment Analysis (ssGSEA) method to identify key toxicological pathways and constructed a diagnostic model based on 113 machine learning algorithms. By integrating Weighted Gene Co-expression Network Analysis (WGCNA) and single-cell analysis, we identified hub genes associated with the Sertoli Cell-Only Syndrome (SCOS) subtype. Finally, biomolecular modeling was conducted to validate the binding efficacy of the hub genes with TCDD. RESULTS Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis based on the ssGSEA method indicated that TCDD may disrupt spermatogenesis by activating the Tumor Necrosis Factor (TNF) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways while inhibiting the Vascular Endothelial Growth Factor (VEGF) signaling pathway, ultimately leading to NOA. Through the integration of machine learning techniques, 5 hub genes (AUC > 0.7) induced by TCDD and associated with NOA were identified: Androgen receptor (AR), Chromodomain Helicase DNA-Binding Protein 1 (CHD1), Discoidin Domain Receptor Tyrosine Kinase 2 (DDR2), Retinoic Acid Receptor-Related Orphan Receptor Alpha (RORA), and Glutamate Ionotropic Receptor AMPA Type Subunit 1 (GRIA1). WGCNA and single-cell analysis revealed that AR and DDR2 were specifically expressed in the testicular tissues of NOA patients and were closely associated with SCOS (p < 0.05). Immune infiltration analysis suggested that TCDD induces abnormal infiltration of various immune cells, indicating its close relationship with immune inflammatory responses (p < 0.05). Biomolecular modeling further demonstrated a strong binding affinity between AR and TCDD (∆G = -8.3 kcal·mol⁻¹, Etotal = -37.79 kcal·mol⁻¹), highlighting the critical role of AR in TCDD-induced NOA. CONCLUSIONS This study reveals the potential molecular mechanisms by which TCDD induces NOA, providing new targets for the development of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Xu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Shuai Chen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Wei Fu
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518133, China.
| | - Xuyao Lin
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Fugang Zhang
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan 650021, China.
| | - Guozheng Qin
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan 650021, China.
| | - Zhuojun Yuan
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan 650021, China.
| | - Bin Huang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan 418000, China.
| |
Collapse
|
2
|
Arteaga‐Silva M, Vigueras‐Villaseñor RM, Guillen‐Herrera G, Landero‐Huerta DA, Contreras‐García IJ, Montes S, Ríos C, Limón‐Morales O, Rojas‐Castañeda JC. Perinatal exposure to lead alters male reproductive behaviour and immunoreactivity of androgen and oestrogen receptors in the brain. Int J Exp Pathol 2025; 106:e12521. [PMID: 39676704 PMCID: PMC11730980 DOI: 10.1111/iep.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 12/17/2024] Open
Abstract
Lead (Pb) exposure during perinatal development alters testosterone (T) concentrations and delays puberty in children and laboratory rodents. In addition, exposure to the metal during adult life decreases T and libido in men and affects male reproductive behaviour (MRB) in rats. MRB is regulated by various brain nuclei including the medial preoptic area (MPOa) and the medial amygdala (MeA), in which T and oestradiol (E2) act through their respective androgen (AR) and oestrogen (ER) receptors. However, the mechanism by which MRB is affected by Pb exposure is not known. The objectives of the present study were to evaluate whether perinatal Pb exposure affects MRB and the number of cells immunoreactive to AR and ERα in the MPOa and the MeA. Male Wistar rats exposed to Pb (320 ppm) in drinking water from the beginning of pregnancy until weaning were used. The experimental group experienced significant alterations in MRB, an important decrease in T and E2 concentrations, and a significant increase in Pb concentrations in the blood, MPOa (hypothalamus) and MeA. In addition, in the studied areas the number of cells immunoreactive to AR and ERα, or detected using the Nissl technique, decreased significantly. These results show that perinatal exposure to Pb alters MRB. This event may be related to a decrease in both the concentrations of sex hormones and the number of cells that express their receptors as well as in the neuronal Nissl staining population. This ultimately affects the quality of life of the individual.
Collapse
Affiliation(s)
- Marcela Arteaga‐Silva
- Departamento de Biología de la Reproducción, División de Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana‐IztapalapaCiudad de MéxicoMexico
| | | | - Gustavo Guillen‐Herrera
- Departamento de Biología de la Reproducción, División de Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana‐IztapalapaCiudad de MéxicoMexico
| | | | | | - Sergio Montes
- Departamento de Farmacología, Unidad Académica Multidisciplinaria Reynos‐Aztlan ReynosaUniversidad Autónoma de TamaulipasReynosaTamaulipasMexico
| | - Camilo Ríos
- Instituto Nacional de Rehabilitación Luis Guillermo Ibarra IbarraCiudad de MéxicoMexico
| | - Ofelia Limón‐Morales
- Departamento de Biología de la Reproducción, División de Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana‐IztapalapaCiudad de MéxicoMexico
| | | |
Collapse
|
3
|
Qiao Y, Cui Y, Tan Y, Zhuang C, Li X, Yong Y, Zhang X, Ren X, Cai M, Yang J, Lang Y, Wang J, Liang C, Zhang J. Fluoride induces immunotoxicity by regulating riboflavin transport and metabolism partly through IL-17A in the spleen. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135085. [PMID: 38968825 DOI: 10.1016/j.jhazmat.2024.135085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The impairment of the immune system by fluoride is a public health concern worldwide, yet the underlying mechanism is unclear. Both riboflavin and IL-17A are closely related to immune function and regulate the testicular toxicity of fluoride. However, whether riboflavin or IL-17A is involved in fluoride-induced immunotoxicity is unknown. Here, we first established a male ICR mouse model by treating mice with sodium fluoride (NaF) (100 mg/L) via the drinking water for 91 days. The results showed that fluoride increased the expression of the proinflammatory factors IL-1β and IL-17A, which led to splenic inflammation and morphological injury. Moreover, the expression levels of the riboflavin transporters SLC52A2 and SLC52A3; the transformation-related enzymes RFK and FLAD1; and the key mitochondrial functional determinants SDH, COX, and ATP in the spleen were measured via real-time PCR, Western blotting, and ELISA. The results revealed that fluoride disrupted riboflavin transport, transformation, metabolism, and mitochondrial function. Furthermore, wild-type (WT) and IL-17A knockout (IL-17A-/-) C57BL/6 J male mice of the same age were treated with NaF (24 mg/kg·bw, equivalent to 100 mg/L) and/or riboflavin sodium phosphate (5 mg/kg·bw) via gavage for 91 days. Similar parameters were evaluated as above. The results confirmed that fluoride increased riboflavin metabolism through RFK but not through FLAD1. Fluoride also affected mitochondrial function and activated neutrophils (marked with Ly6g) and macrophages (marked with CD68) in the spleen. Interestingly, IL-17A partly mediated fluoride-induced riboflavin metabolism disorder and immunotoxicity in the spleen. This work not only reveals a novel toxic mechanism for fluoride but also provides new clues for exploring the physiological function of riboflavin and for diagnosing and treating the toxic effects of fluoride in the environment.
Collapse
Affiliation(s)
- Yurou Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yukun Cui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yanjia Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yufei Yong
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xinying Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xuting Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Miaomiao Cai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jie Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yilin Lang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
4
|
Farag MR, El-Naseery NI, El Behery EI, Nouh DS, El-Mleeh A, Mostafa IMA, Alagawany M, Di Cerbo A, Azzam MM, Mawed SA. The Role of Chlorella vulgaris in Attenuating Infertility Induced by Cadmium Chloride via Suppressing Oxidative Stress and Modulating Spermatogenesis and Steroidogenesis in Male Rats. Biol Trace Elem Res 2024; 202:4007-4020. [PMID: 38114777 DOI: 10.1007/s12011-023-03971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Cadmium (Cd) is an environmental pollutant known as endocrine disruptor . Cd has been reported to induce perturbations of the testicular functions and the subsequent decline of the male fertility of both animals and humans. Chlorella vulgaris (ChV) a species of green microalga has been reported to have multiple beneficial activities such as anti-inflammatory, antioxidant, and antiapoptotic effects. Thus, this work was conducted to declare the benefits of Chlorella vulgaris (ChV) (500 mg/kg doses) against cadmium chloride CdCl2 (2 mg/kg doses) toxicity on the main and accessory reproductive organs' weight, structure, and function of male rats. Briefly, 40 adult male rats in 4 groups (n = 10) were used as follows; control, ChV, CdCl2, and CdCl2+ChV. (i) The 1st group was kept as control fed on pellet chow and water ad libitum. (ii) The second group is Chlorella vulgaris (ChV) group fed with C. vulgaris alga for 10 days (500 mg/kg BW). (iii) The third group was administrated CdCl2 (2mg/kg BW) via subcutaneous injection (S/C) daily for 10 days. (iv) The fourth group administered both CdCl2 and ChV with the abovementioned doses daily for successive 10 days. Our observations declared that cadmium exhibited an adverse influence on the testes and prostate gland architecture indicated by seminiferous tubule destruction, testicular edema, degeneration of Leydig cells, and prostate acini damage. All together affect the epididymal semen quality and quantity including sperm viability, motility, and count. Interestingly, ChV could restore the testicular architecture and spermatozoa regeneration accompanied by semen quality improvement and increased reproductive hormones including testosterone. On the other side, ChV suppresses reactive oxygen species (ROS) formation via enhancement the antioxidant-related genes in the testicular tissue including SOD, CAT, GSH, and MDA and maintaining spermatocyte survival via suppression of apoptotic related genes including caspase3 and activating steroidogenic related genes including StAR and HSD17β3 in the cadmium-treated testes. In this study, ChV could enhance male fertility under normal or stressful conditions and ameliorate the adverse effects of hazardous heavy metals that are widely distributed in our environment.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Nesma I El-Naseery
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Eman I El Behery
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt
| | - Doaa S Nouh
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum, 32511, Egypt
| | - Ismail M A Mostafa
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Mahmoud M Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suzan A Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
5
|
Makipour A, Hosseinifar S, Khazaeel K, Tabandeh MR, Jamshidian J. Protective effect of Chlorella vulgaris on testicular damage, sperm parameters, androgen production, apoptosis and oxidative stress index in male rats following doxorubicin administration. Reprod Toxicol 2024; 128:108653. [PMID: 38960208 DOI: 10.1016/j.reprotox.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy agent associated with adverse effects on male reproductive health. Chlorella vulgaris (ChV) is a potent natural antioxidant with promising applications in maintaining health and preventing oxidative stress-related diseases. The present study aimed to investigate the protective effect of ChV on DOX-induced testicular toxicity. Twenty-five Wistar rats (230 ± 20 g) were randomly assigned to five groups (n = 5), including the control group, sham group (received normal saline by oral gavage daily and intraperitoneally (IP) once a week), DOX group (3 mg/kg; once a week; IP), ChV group (300 mg/kg/day; by oral gavage), and DOX (3 mg/kg; once a week; IP) + ChV (300 mg/kg/day; by oral gavage) group. After 8 weeks of treatment, the rats were euthanized and serum testosterone level, testes histomorphometry, gonadosomatic index (GSI), apoptotic gene expression, oxidative stress index, and sperm parameters were assessed. The results showed that DOX led to a significant decrease in histological indexes, testosterone level, GSI, sperm parameters, and Bcl-2 gene expression and increased expression of P-53 and Bax genes, and oxidative stress markers (P<0.05). The administration of ChV in the DOX+ChV group significantly improved testosterone levels, sperm parameters, testicular tissue apoptosis, antioxidant enzymes, and structural integrity of the testes (P<0.05). The findings suggest that the co-administration of ChV can be a promising therapeutic agent to reduce the adverse effects of DOX on male reproductive performance.
Collapse
Affiliation(s)
- Azam Makipour
- Department of Basic Sciences, Division of Histology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Shima Hosseinifar
- Department of Basic Sciences, Division of Histology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Kaveh Khazaeel
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Javad Jamshidian
- Department of Basic Sciences, Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
6
|
Grunz EA, Anderson H, Ernst RM, Price S, Good D, Vieira-Potter V, Parrish AR. Lead Decreases Bone Morphogenetic Protein-7 (BMP-7) Expression and Increases Renal Cell Carcinoma Growth in a Sex-Divergent Manner. Int J Mol Sci 2024; 25:6139. [PMID: 38892327 PMCID: PMC11172964 DOI: 10.3390/ijms25116139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Both tissue and blood lead levels are elevated in renal cell carcinoma (RCC) patients. These studies assessed the impact of the subchronic lead challenge on the progression of RCC in vitro and in vivo. Lead challenge of Renca cells with 0.5 μM lead acetate for 10 consecutive passages decreased E-cadherin expression and cell aggregation. Proliferation, colony formation, and wound healing were increased. When lead-challenged cells were injected into mice, tumor size at day 21 was increased; interestingly, this increase was seen in male but not female mice. When mice were challenged with 32 ppm lead in drinking water for 20 weeks prior to tumor cell injection, there was an increase in tumor size in male, but not female, mice at day 21. To investigate the mechanism underlying the sex differences, the expression of sex hormone receptors in Renca cells was examined. Control Renca cells expressed estrogen receptor (ER) alpha but not ER beta or androgen receptor (AR), as assessed by qPCR, and the expression of ERα was increased in tumors in both sexes. In tumor samples harvested from lead-challenged cells, both ERα and AR were detected by qPCR, yet there was a significant decrease in AR seen in lead-challenged tumor cells from male mice only. This was paralleled by a plate-based array demonstrating the same sex difference in BMP-7 gene expression, which was also significantly decreased in tumors harvested from male but not female mice; this finding was validated by immunohistochemistry. A similar expression pattern was seen in tumors harvested from the mice challenged with lead in the drinking water. These data suggest that lead promotes RCC progression in a sex-dependent via a mechanism that may involve sex-divergent changes in BMP-7 expression.
Collapse
Affiliation(s)
- Elizabeth A. Grunz
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| | - Haley Anderson
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| | - Rebecka M. Ernst
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| | - Spencer Price
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| | - D’Artanyan Good
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| | - Victoria Vieira-Potter
- Department of Nutrition and Exercise Physiology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Alan R. Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
7
|
Abo El-Ela FI, Gamal A, El-Banna HA, Ibrahim MA, El-Banna AH, Abdel-Razik ARH, Abdel-Wahab A, Hassan WH, Abdelghany AK. Repro-protective activity of amygdalin and spirulina platensis in niosomes and conventional forms against aluminum chloride-induced testicular challenge in adult rats: role of CYP11A1, StAR, and HSD-3B expressions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3211-3226. [PMID: 37910183 PMCID: PMC11074051 DOI: 10.1007/s00210-023-02788-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
The male reproductive system is negatively influenced by Al exposure. Al represented a considerable hazard to men's reproduction capabilities. Amygdalin (AMG) and spirulina platensis (SP) have been considered to have a strong antioxidant and repro-protective activity; also, targeted drug delivery systems called niosomes improve the distribution of water-soluble medications like amygdalin and spirulina. Current study targeted to determine the effectiveness of AMG and SP against negative reproductive impact resulted by aluminum chloride (AlCl3) toxicity. Sixty adult male albino rats were separated into 6 groups, including the control group, which received distilled water; AlCl3 group, which received AlCl3; AMG+AlCl3 group, which received AlCl3+AMG; AMGLN+AlCl3 group, which received AlCl3+amygdalin-loaded niosomes; SP+AlCl3 group, which received AlCl3+SP; and SPLN+AlCl3 group, which received AlCl3+spirulina-loaded niosomes. All treatments were orally gavaged daily for 5 weeks, and rats were weighed weekly. At the termination of the experiment, some males (three from each group) were used for fertility traits via mating thirty virgin rat females (in a ratio of 1:2 and 2:3 male:female, respectively) followed by recording of birth weights and litter size (number of pups per each female) at birth to assess males' reproductive capability. Other males were euthanized for collection of serum, epididymal semen samples, and tissue samples for biochemical, sperm evaluation, gene expression, and histopathological measurements. There are a considerable number of negative impacts of AlCl3 on male fertility clarified by declined serum testosterone levels; an increased oxidative stress (MDA, TAC); deteriorated semen quality; down-regulation of CYP11A1, StAR, and HSD-3b gene expressions; and testicular tissue degenerative changes. In addition, litter size (number of pups per each female) and birth weights of pups obtained from mated females were affected. AMG and SP treatments, either in niosomal or conventional form, alleviated the AlCl3 negative effects by reducing oxidative stress; increasing testosterone levels; improving semen quality; upregulating of CYP11A1, StAR, and HSD-3b gene expressions; and reducing degenerative changes of testicular tissue. Besides, negative reproductive effect was diminished as observed by changes in the litter size (number of pups per each female) and birth weights of pups obtained from mated females. AMG and SP treatments (either in niosomal or conventional form), ameliorated the AlCl3 negative effects as they possess powerful antioxidant activity, as well as they have the ability to improve the reproductive activity of affected males.
Collapse
Affiliation(s)
- Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Amr Gamal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed H El-Banna
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Abdel-Wahab
- Department of Physiology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Walid Hamdy Hassan
- Department of Microbiology Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Asmaa K Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
8
|
Simón L, Mariotti-Celis MS. Bioactive compounds as potential alternative treatments to prevent cancer therapy-induced male infertility. Front Endocrinol (Lausanne) 2024; 14:1293780. [PMID: 38303979 PMCID: PMC10831851 DOI: 10.3389/fendo.2023.1293780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
About 8-12% of couples experience infertility, with male infertility being the cause in 50% of cases. Several congenital and acquired conditions, including chronic diseases and their treatments, can contribute to male infertility. Prostate cancer incidence increases annually by roughly 3%, leading to an increment in cancer treatments that have adverse effects on male fertility. To preserve male fertility post-cancer survival, conventional cancer treatments use sperm cryopreservation and hormone stimulation. However, these techniques are invasive, expensive, and unsuitable in prepubertal patients lacking mature sperm cells. Alternatively, nutritional therapies enriched with bioactive compounds are highlighted as non-invasive approaches to prevent male infertility that are easily implementable and cost-effective. In fact, curcumin and resveratrol are two examples of bioactive compounds with chemo-preventive effects at the testicular level. In this article, we summarize and discuss the literature regarding bioactive compounds and their mechanisms in preventing cancer treatment-induced male infertility. This information may lead to novel opportunities for future interventions.
Collapse
Affiliation(s)
- Layla Simón
- Nutrition and Dietetic School, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | | |
Collapse
|
9
|
Ojo OA, Agboola AO, Ogunro OB, Iyobhebhe M, Elebiyo TC, Rotimi DE, Ayeni JF, Ojo AB, Odugbemi AI, Egieyeh SA, Oluba OM. Beet leaf (beta vulgaris L.) extract attenuates iron-induced testicular toxicity: Experimental and computational approach. Heliyon 2023; 9:e17700. [PMID: 37483802 PMCID: PMC10359825 DOI: 10.1016/j.heliyon.2023.e17700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The purpose of this study was to investigate the protective effect of Beta vulgaris leaf extract (BVLE) on Fe2+-induced oxidative testicular damage via experimental and computational models. Oxidative testicular damage was induced via incubation of testicular tissue supernatant with 0.1 mM FeSO4 for 30 min at 37 °C. Treatment was achieved by incubating the testicular tissues with BVLE under the same conditions. The catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and nitric oxide (NO) levels, acetylcholinesterase (AChE), sodium-potassium adenosine triphosphatase (Na+/K + ATPase), ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase), glucose-6-phosphatase (G6Pase), and fructose-1,6-bisphosphatase (F-1,6-BPase) were all measured in the tissues. We identified the bioactive compounds present using high-performance liquid chromatography (HPLC). Molecular docking and dynamic simulations were done on all identified compounds using a computational approach. The induction of testicular damage (p < 0.05) decreased the activities of GSH, SOD, CAT, and ENTPDase. In contrast, induction of testicular damage also resulted in a significant increase in MDA and NO levels and an increase in ATPase, G6Pase, and F-1,6-BPase activities. BVLE treatment (p < 0.05) reduced these levels and activities compared to control levels. An HPLC investigation revealed fifteen compounds in BVLE, with quercetin being the most abundant. The molecular docking and MDS analysis of the present study suggest that schaftoside may be an effective allosteric inhibitor of fructose 1,6-bisphosphatase based on the interacting residues and the subsequent effect on the dynamic loop conformation. These findings indicate that B. vulgaris can protect against Fe2+-induced testicular injury by suppressing oxidative stress, acetylcholinesterase, and purinergic activities while regulating carbohydrate dysmetabolism.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria
| | | | | | | | | | | | | | | | - Adeshina Isaiah Odugbemi
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria
- South African National Bioinformatics Institute, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Cape Town, South Africa
| | - Samuel Ayodele Egieyeh
- National Institute for Theoretical and Computational Sciences (NITheCS), Cape Town, South Africa
- School of Pharmacy, University of Western Cape, Cape Town, South Africa
| | | |
Collapse
|
10
|
Barghchi H, Dehnavi Z, Nattagh-Eshtivani E, Alwaily ER, Almulla AF, Kareem AK, Barati M, Ranjbar G, Mohammadzadeh A, Rahimi P, Pahlavani N. The effects of Chlorella vulgaris on cardiovascular risk factors: A comprehensive review on putative molecular mechanisms. Biomed Pharmacother 2023; 162:114624. [PMID: 37018990 DOI: 10.1016/j.biopha.2023.114624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
High incidence rate of cardiovascular disease (CVD) make this condition as an important public health concern. The use of natural products in treating this chronic condition has increased in recent years one of which is the single-celled green alga Chlorella. Chlorella vulgaris (CV) has been studied for its potential benefits to human health due to its biological and pharmacological features. CV contains a variety of macro and micronutrients, including proteins, omega-3, polysaccharides, vitamins, and minerals. Some studies have indicated that taking CV as a dietary supplement can help reduce inflammation and oxidative stress. In some studies, cardiovascular risk factors that are based on hematological indices did not show these benefits, and no molecular mechanisms have been identified. This comprehensive review summarized the research on the cardio-protective benefits of chlorella supplementation and the underlying molecular processes.
Collapse
Affiliation(s)
- Hanieh Barghchi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Dehnavi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elyas Nattagh-Eshtivani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali K Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | - Mehdi Barati
- Department of Pathobiology and Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Golnaz Ranjbar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Mohammadzadeh
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Pegah Rahimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; School of Medical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| |
Collapse
|
11
|
El-Magid ADA, AbdEl-Hamid OM, Younes MA. The Biochemical Effects of Silver Nanoparticles and Spirulina Extract on Experimentally Induced Prostatic Cancer in Rats. Biol Trace Elem Res 2023; 201:1935-1945. [PMID: 35689758 PMCID: PMC9931816 DOI: 10.1007/s12011-022-03298-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
Prostate cancer (PCa) is the most diagnosed cancer in 112 countries and the second leading cause of death in men in 48 countries. We studied the outstanding agents silver nanoparticles (AgNPs) and Spirulina algae (Sp) for the management of PCa once as monotherapy or last as a combination. PCa in rats was induced using bicalutamide (Casodex®) and testosterone, followed by (7, 12-dimethylbenz[a]anthracene). Then, testosterone was injected s.c. for 3 months. Rats were divided into six groups, with 12 rats in each group. Group I was assigned as the control (co), group II as the PCa model, group III treated with AgNPs, group IV treated with Spirulina extract, group V treated with a combination of AgNPs plus Spirulina, and group VI treated with bicalutamide. The results show that AgNPs could normalize IL-6 levels and could overcome the hormonal disturbance induced in PCa rats along the hypothalamic-pituitary-testis axis. Spirulina revealed a significant reduction in the level of total and free prostatic specific antigen (PSA) to the same level as bicalutamide treatment, which was the same as the control group. Histopathological study revealed regression (75%) of the histological pattern of high-grade prostatic intraepithelial neoplasia (HGPIN) for Spirulina alone, and (50%) for bicalutamide. The best effect on IL-6 decline was reached with the AgNPs/Spirulina combination as well as bicalutamide treatment compared with the PCa group. Bicalutamide treatment significantly decreased the PSA concentration relative to the PCa group and reached the normal level. Adding Spirulina to AgNPs as a combination enhanced its effect on all mentioned drawbacks associated with PCa except hormonal imbalance that needs more adjustments.
Collapse
Affiliation(s)
- Afaf D Abd El-Magid
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Mushtuhur, Touch, Al Qalyubia Governorate, Benha, Egypt
| | - Omnia M AbdEl-Hamid
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Mushtuhur, Touch, Al Qalyubia Governorate, Benha, Egypt
| | - M A Younes
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Mushtuhur, Touch, Al Qalyubia Governorate, Benha, Egypt.
| |
Collapse
|
12
|
Ijaz MU, Haider S, Tahir A, Afsar T, Almajwal A, Amor H, Razak S. Mechanistic insight into the protective effects of fisetin against arsenic-induced reproductive toxicity in male rats. Sci Rep 2023; 13:3080. [PMID: 36813806 PMCID: PMC9947136 DOI: 10.1038/s41598-023-30302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Arsenic is one of the most hazardous environmental contaminants, which adversely affects the dynamics of male reproductive system. Fisetin (FIS) is a bioactive flavonoid, which is known to exert strong antioxidative effects. Therefore, the current research was planned to evaluate the alleviative efficacy of FIS against arsenic-induced reproductive damages. Forty-eight male albino rats were divided into 4 groups (n = 12), which were treated as follows: (1) Control, (2) Arsenic-intoxicated group (8 mg kg-1), (3) Arsenic + FIS-treated group (8 mg kg-1 + 10 mg kg-1), and (4) FIS-treated group (10 mgkg-1). After 56 days of treatment, the biochemical, lipidemic, steroidogenic, hormonal, spermatological, apoptotic and histoarchitectural profiles of rats were analyzed. Arsenic intoxication reduced the enzymatic activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GSR), in addition to glutathione (GSH) level. Conversely, the levels of thiobarbituric acid reactive substance (TBARS) and reactive oxygen species (ROS) were increased. Moreover, it escalated the level of low-density lipoprotein (LDL), triglycerides and total cholesterol, while declining the level of high-density lipoprotein (HDL). Furthermore, steroidogenic enzymes expressions, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (CYP11A1) and 17α-hydroxylase/17, 20-lyase (CYP17A1), were found to be reduced, which brought down the level of testosterone. Besides, the levels of gonadotropins (LH and FSH) were decreased. Additionally, a decline in sperm mitochondrial membrane potential (MMP), motility, epididymal sperm count and hypo-osmotic swelling (HOS) coil-tailed sperms was observed, whereas the dead sperms and structural damages (head, midpiece and tail) of sperms were escalated. Moreover, arsenic exposure up-regulated the mRNA expressions of apoptotic markers, namely Bax and caspase-3, whereas lowered the expression of anti-apoptotic marker, Bcl-2. In addition, it induced histoarchitectural changes in testes of rats. However, FIS treatment resulted in remarkable improvements in testicular and sperm parameters. Therefore, it was inferred that FIS could serve as a therapeutic candidate against arsenic-generated male reproductive toxicity attributing to its anti-oxidant, anti-lipoperoxidative, anti-apoptotic, and androgenic efficacy.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Saqlain Haider
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Houda Amor
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, Homburg, Germany
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
13
|
Behairy A, Hashem MM, Abo-El-Sooud K, El-Metwally AE, Hassan BA, Abd-Elhakim YM. Quercetin Abates Aluminum Trioxide Nanoparticles and Lead Acetate Induced Altered Sperm Quality, Testicular Oxidative Damage, and Sexual Hormones Disruption in Male Rats. Antioxidants (Basel) 2022; 11:2133. [PMID: 36358505 PMCID: PMC9686927 DOI: 10.3390/antiox11112133] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
This study examined the effects of exposure to lead acetate (PbAc) and/or aluminum trioxide nanoparticles (Al2O3NPs) on testicular function. Additionally, the probable reproprotective effects of quercetin (QTN) against Al2O3NPs and PbAc co-exposure in male Sprague Dawely rats were assessed. Al2O3NPs (100 mg/kg b.wt.), PbAc (50 mg/kg b.wt.), and QTN (20 mg/kg b.wt.) were orally administered for 60 days. Then, spermiogram, histopathological examinations of the testis and accessory glands, and immunohistochemical detection of androgen receptors (AR) and tumor necrotic factor alpha (TNF-α) were achieved. Moreover, serum levels of male sex hormones and testicular levels of antioxidant indices were estimated. The results showed that Al2O3NPs and/or PbAc caused significant sperm abnormalities, testicular oxidative stress, and histopathological changes. Furthermore, serum testosterone, LH, and FSH levels significantly decreased, while estradiol levels significantly increased. The Al2O3NPs and/or PbAc co-exposed group had more obvious disturbances. Furthermore, QTN co-administration significantly reversed the Al2O3NPs and PbAc-induced testicular histopathological alterations, reduced antioxidant defenses, and altered AR and TNF-α immune expression in testicular tissues. Conclusively, Al2O3NPs and/or PbAc evoked testicular dysfunction by inducing oxidative injury and inflammation. However, QTN oral dosing effectively mitigated the negative effects of Al2O3NPs and PbAc by suppressing oxidative stress and inflammation and improving the antioxidant defense system.
Collapse
Affiliation(s)
- Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M. Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Abeer E. El-Metwally
- Pathology Department, Animal Reproduction Research Institute, Giza 3514805, Egypt
| | - Bayan A. Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
14
|
Yu H, Liang H, Ge X, Zhu J, Wang Y, Ren M, Chen X. Dietary chlorella (Chlorella vulgaris) supplementation effectively improves body color, alleviates muscle inflammation and inhibits apoptosis in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 127:140-147. [PMID: 35716968 DOI: 10.1016/j.fsi.2022.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Muscle quality, antioxidant status, and inflammatory and apoptotic molecule expression were investigated in juvenile largemouth bass fed five levels of Chlorella for 60 days. The results showed that muscle quality can be improved by increasing the muscle crude protein content, muscle and skin brightness value (L*), redness value (a*) and yellowness value (b*) in Chlorella-supplemented diets without affecting the growth and muscle fiber development of fish. Chlorella supplementation did not cause oxidative stress in muscle, but optimal Chlorella administration alleviated the muscle inflammatory response by downregulating the nuclear factor κB (NF-κB)-mediated proinflammatory factors such as interleukin 1β (IL-1β) and interleukin 8 (IL-8). Moreover, anti-apoptotic effects were induced by upregulation of anti-apoptotic genes, such as b cell lymphoma-2 (bcl-2) and myeloid cell leukemia-1 (mcl-1), and downregulation of pro-apoptotic genes, including bcl2-associated x (bax) and caspase3. In conclusion, Chlorella improved muscle quality, alleviated muscle inflammation and resisted muscle apoptosis.
Collapse
Affiliation(s)
- Heng Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Jian Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Yongli Wang
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610093, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Xiaoru Chen
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610093, China
| |
Collapse
|
15
|
Gao Y, Wang C, Wang K, He C, Hu K, Liang M. The effects and molecular mechanism of heat stress on spermatogenesis and the mitigation measures. Syst Biol Reprod Med 2022; 68:331-347. [PMID: 35722894 DOI: 10.1080/19396368.2022.2074325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Under normal conditions, to achieve optimal spermatogenesis, the temperature of the testes should be 2-6 °C lower than body temperature. Cryptorchidism is one of the common pathogenic factors of male infertility. The increase of testicular temperature in male cryptorchidism patients leads to the disorder of body regulation and balance, induces the oxidative stress response of germ cells, destroys the integrity of sperm DNA, yields morphologically abnormal sperm, and leads to excessive apoptosis of germ cells. These physiological changes in the body can reduce sperm fertility and lead to male infertility. This paper describes the factors causing testicular heat stress, including lifestyle and behavioral factors, occupational and environmental factors (external factors), and clinical factors caused by pathological conditions (internal factors). Studies have shown that wearing tight pants or an inappropriate posture when sitting for a long time in daily life, and an increase in ambient temperature caused by different seasons or in different areas, can cause an increase in testicular temperature, induces testicular oxidative stress response, and reduce male fertility. The occurrence of cryptorchidism causes pathological changes within the testis and sperm, such as increased germ cell apoptosis, DNA damage in sperm cells, changes in gene expression, increase in chromosome aneuploidy, and changes in Na+/K+-ATPase activity, etc. At the end of the article, we list some substances that can relieve oxidative stress in tissues, such as trigonelline, melatonin, R. apetalus, and angelica powder. These substances can protect testicular tissue and relieve the damage caused by excessive oxidative stress.
Collapse
Affiliation(s)
- Yuanyuan Gao
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Chen Wang
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Kaixian Wang
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Chaofan He
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| |
Collapse
|