1
|
Liu L, Zhu G, Hu J, Chen H, Zhai Y. An unignorable human health risk posed by antibiotic resistome and microbiome in urban rivers: Insights from Beijing, China. ENVIRONMENTAL RESEARCH 2025; 268:120752. [PMID: 39755199 DOI: 10.1016/j.envres.2025.120752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Urban rivers are the main water bodies humans frequently come into contact with, so the risks posed are closely monitored. Antibiotic resistance genes (ARGs) residues in reclaimed water pose serious risks to human health. There are urgent needs to improve the understanding of distribution of and risks posed by ARGs in urban rivers. In this study, shotgun metagenomic approach was used to characterize ARGs, mobile genetic elements (MGEs), and virulence factors (VFs) in water and sediment from Xinfeng River in Beijing and to identify microbes, potential antibiotic resistant bacteria, and human pathogens (HPs). MGE, microbial community, VF, and ARG co-occurrences were used to assess the environmental risks posed by ARGs. The results indicated that quinolone was the most abundant ARG type and that tufA and fusA were the two dominant ARG subtypes. Wetland effluent increased ARG abundance in the river, and the effect was detected even 50 m downstream. ARG abundances and distribution in the river had difference in different seasons. The dominant bacteria in the river were Proteobacteria, Bacteroidetes, and Actinobacteria, and 59 HPs were detected. In total, 69 MGEs and 19 VFs were found. Co-occurrence networks indicated that potential antibiotic resistant bacteria, MGEs, VFs, and ARGs in the river significantly correlated, indicating the potential risks posed by ARGs. The results improve our understanding of ARG distribution and environmental risks in urban river water. More attention should be paid to controlling environmental risks posed by ARGs in urban river and reclaimed water.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Jingdan Hu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
2
|
Wu Y, Sun Y, Liu J, Ma Y, Fang L, Zhang Y, Qi R. Ticks carry various antibiotic resistance genes and can serve as vectors for their dissemination and as reservoirs by vertical propagation. ENVIRONMENTAL RESEARCH 2024; 262:119976. [PMID: 39270953 DOI: 10.1016/j.envres.2024.119976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Affiliation(s)
- Yi Wu
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China.
| | - Yuechen Sun
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China.
| | - Jingpeng Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China.
| | - Yixin Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China.
| | - Lizhu Fang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, China.
| | - Yaming Zhang
- Harbin Municipal Center for Disease Control and Prevention, Harbin, Heilongjiang Province, China.
| | - Rui Qi
- School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China.
| |
Collapse
|
3
|
Zhang S, Yang G, Zhang Y, Yang C. High-throughput profiling of antibiotic resistance genes in the Yellow River of Henan Province, China. Sci Rep 2024; 14:17490. [PMID: 39080455 PMCID: PMC11289115 DOI: 10.1038/s41598-024-68699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Profiling antibiotic resistance genes (ARGs) in the Yellow River of China's Henan Province is essential for understanding the health risks of antibiotic resistance. The profiling of ARGs was investigated using high-throughput qPCR from water samples in seven representative regions of the Yellow River. The absolute and relative abundances of ARGs and moble genetic elements (MGEs) were higher in summer than in winter (ANOVA, p < 0.001). The diversity and abundance of ARGs were higher in the Yellow River samples from PY and KF than the other sites. Temperature (r = 0.470 ~ 0.805, p < 0.05) and precipitation (r = 0.492 ~ 0.815, p < 0.05) positively influenced the ARGs, while pH had a negative effect (r = - 0.462 ~ - 0.849, p < 0.05). Network analysis indicated that the pathogenic bacteria Rahnella, Bacillus, and Shewanella were the possible hub hosts of ARGs, and tnpA1 was the potential MGE hub. These findings provide insights into the factors influencing ARG dynamics and the complex interaction among the MGEs, pathogenic bacteria and environmental parameters in enriching ARGs in the Yellow River of Henan Province.
Collapse
Affiliation(s)
- Shuhong Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yiyun Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Chao Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| |
Collapse
|
4
|
Liu Q, Li Y, Sun Y, Xie K, Zeng Q, Hao Y, Yang Q, Pu Y, Shi S, Gong Z. Deterioration of sludge characteristics and promotion of antibiotic resistance genes spread with the co-existing of polyvinylchloride microplastics and tetracycline in the sequencing batch reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167544. [PMID: 37797771 DOI: 10.1016/j.scitotenv.2023.167544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
With the continuous increase in microplastics (MPs) and tetracycline (TC) entering wastewater treatment plants (WWTPs) along with sewage, the co-existence of MPs and TC in the biological treatment of wastewater has attracted extensive attention. This study investigated the effect of 1 mg/L polyvinyl chloride (PVC) MPs and 100 ng/L TC co-existing on sequencing batch reactors (SBRs) (S2) treating phenol wastewater in contrast to the control with TC alone (S1). The phenol removal efficiency was significantly inhibited by the co-existence of PVC MPs and TC. Sludge characteristics were also distinctively influenced. The decreased zone sludge velocity (ZSV) and increased sludge volume index (SVI) indicated that the combined effect of PVC MPs and TC deteriorated sludge settleability, which had positive and negative linear correlations with extracellular polymeric substances (EPS) content and the protein (PN)/polysaccharide (PS) ratio, respectively. Moreover, the decreased and increased relative abundances of potential phenol-degraders and antibiotic resistance gene (ARG) carriers may elucidate the inhibition of phenol removal and promotion of ARGs propagation with the co-occurrence of PVC MPs and TC. In addition, the enhanced potential ARGs hosts, loss of the EPS protective effect, and increased membrane permeability induced by reactive oxygen species (ROS) jointly promoted ARGs dissemination in the co-existence of PVC MPs and TC. Notably, the co-occurrence of ARGs and mobile genetic element (MGEs) indicated that the co-existence of PVC MPs and TC promoted the spread of some transposase-associated ARGs mediated by horizontal gene transfer (HGT).
Collapse
Affiliation(s)
- Qiangwei Liu
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yuxin Li
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yanan Sun
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Kunpeng Xie
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Qianzhi Zeng
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yiming Hao
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Qing Yang
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yunhong Pu
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Shengnan Shi
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China..
| | - Zheng Gong
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China..
| |
Collapse
|
5
|
Wanyan R, Pan M, Mai Z, Xiong X, Wang S, Han Q, Yu Q, Wang G, Wu S, Li H. Fate of high-risk antibiotic resistance genes in large-scale aquaculture sediments: Geographical differentiation and corresponding drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167068. [PMID: 37714353 DOI: 10.1016/j.scitotenv.2023.167068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Antibiotic resistance genes (ARGs), emerging environmental contaminants, have become challenges of public health security. However, the distribution and drivers of ARGs, especially high-risk ARGs, in large-scale aquaculture sediments remain unknown. Here, we collected sediment samples from 40 crayfish ponds in seven main crayfish culture provinces in China and then investigated the distribution and risk of ARGs based on high-throughput sequencing and quantitative PCR techniques. Our results suggested that aquaculture sediment was potential reservoir of ARGs and the abundance of aadA-02 was the highest. High-risk ARG (floR) was also prevalent in the sediment and was the most abundant in Jiangsu Province, where opportunistic pathogens were also enriched. The abundance of floR was positively correlated with different environmental factors, such as total phosphorus in water and total carbon in sediment. In addition, Mycobacterium sp., opportunistic pathogenic bacteria, might be potential host for floR. Furthermore, the potential propagation pathway of ARGs was from sediment to crayfish gut, and Bacteroidetes and Proteobacteria might be the main bacterial groups responsible for the proliferation of ARGs. Generally, our results illustrate that pond sediment may be an ARG reservoir of aquatic animals. Meanwhile, our study helps develop valuable strategies for accessing risks and managing ARGs.
Collapse
Affiliation(s)
- Ruijun Wanyan
- School of Public Health, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Meijing Pan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Mai
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China
| | - Guitang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangong Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
6
|
Wu Y, Li S, Yu K, Hu J, Chen Q, Sun W. Wastewater treatment plant effluents exert different impacts on antibiotic resistome in water and sediment of the receiving river: Metagenomic analysis and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132528. [PMID: 37713776 DOI: 10.1016/j.jhazmat.2023.132528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/06/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Wastewater treatment plants (WWTPs) are considered as hotspots for the spread of antibiotic resistome into the environment. However, the differential contributions of WWTPs to the antibiotic resistome in the receiving river water and sediment are poorly understood. Here, based on metagenomic analysis, we found that the WWTP effluents significantly elevated the diversities and abundances of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in the receiving river water from the Qinghai-Tibet Plateau, but showed less interference with the antibiotic resistome in sediment. Estimated by SourceTracker, WWTPs contributed 60.691.8% of ARGs in downstream river water, much higher than those for sediment (7.7568.0%). A holistic comparison of ARG risks based on analysis of ARG combination, mobility risk, ARG hosts and ARG-carrying pathogens further revealed the great impacts of WWTP effluents on downstream river water rather than sediment. Among various MGEs, tnpA exhibited the greatest potential for the dissemination of ARGs, and displayed highest co-occurrence frequency with multiple ARGs. P. aeruginosa, E. cloacae, and E. coli were identified as the critical-priority pathogens of ARG hosts. This study demonstrated the much greater impacts of WWTP effluents on the downstream water compared with sediment, which is significant for developing effective strategies to mitigate ARG risks.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ke Yu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qian Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Hui C, Yu Q, Liu B, Zhu M, Long Y, Shen D. Microbial contamination risk of landfilled waste with different ages. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:297-307. [PMID: 37738757 DOI: 10.1016/j.wasman.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Landfills are reservoirs of antibiotic resistance genes (ARGs) and pathogens, and humans are exposed to these pollutants during extensive excavation of old landfills. However, the microbial contamination risk of landfilled waste with different ages has not been assessed. In this study, human bacterial pathogens (HBPs), ARGs, and virulence factors (VFs) were systematically determined using metagenomic analysis. Results showed that the abundance of HBPs, ARGs, and VFs increased with landfill age, the percentage of HBPs in refuse with deposit age of 10-12 years (Y10) was 23.75 ± 0.49%, which was higher than that in fresh refuse (Y0, 17.99 ± 0.14%) and refuse with deposit age of 5-6 years (Y5, 19.14 ± 0.15%), indicating that old refuse had higher microbial contamination risk than fresh refuse. Multidrug, macrolide, lincosamide, streptogramine, and tetracycline resistance genes were the primary ARGs, whereas lipooligosaccharides, type IV pili, and polar flagella were the dominant VFs in refuse. The HBPs showed a significant positive correlation with ARGs and VFs. Listeria monocytogenes, Salmonella enterica, Streptococcus pneumoniae, Acinetobacter baumannii, and Escherichia coli possibly possess both multiple ARGs and VFs and could be listed as high-risk HBPs in refuse. Mobile genetic elements, especially transposons, showed positive correlations with most ARGs and VFs, and they were identified as the primary factors accounting for the variations in ARGs and VFs. These findings will help understand the spread of ARGs and VFs in landfills and evaluate the potential risk of microbiological contamination in refuse of different landfill ages, thus providing guidance for preventing disease infection during landfill excavations.
Collapse
Affiliation(s)
- Cai Hui
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qiang Yu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
8
|
Wei G, Gao H, Li S, Liu M, Li R, Zhang Y, Shu Q, Wang W, Zhi L, Zeng Y, Na G. The occurrence and abundance of antibiotic resistance genes in rivers of tropical islands: a case of Hainan Island, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88936-88948. [PMID: 37450180 DOI: 10.1007/s11356-023-28522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
In this study, the occurrence and distribution of 49 antibiotic resistance genes (ARGs) and two integrase genes (intl1, intl2) in three major rivers of Hainan Island, China, were investigated in July 2021, and to explore the spatial distribution of the target genes in the three rivers with the potential influencing factors such as regional characteristics and environmental factors. The results showed that a total of 46 ARGs and two integrase genes were detected in water and sediment, and the absolute abundance of ARGs ranged from 1.16 × 103 to 2.97 × 107 copies/L and 3.34 × 103-1.55 × 107 copies/g. ARGs of macrolides, aminoglycosides, and sulfonamides were this study's main types of ARGs. The aadA2, tetE, ermF, tetX, aac(6')-Ib, tetW, and qnrS genes are predominant ARGs in the water and sediment of the three rivers. The relative abundance of ARGs shows higher abundance in the midstream and downstream and lower abundance in the upstream and estuarine. After conducting a correlation analysis, it was found that there was a significant positive correlation between the ARGs detected in the water of the three main rivers. However, in sediment, tetC was negatively correlated with tetQ, macB was negatively correlated with ermF and ereA (p < 0.05), while the remaining ARGs showed positive correlations. Specifically, there was no significant positive correlation between tetQ and tetC, macB and ereA, and ermF in the sediments. Among the nine environmental factors studied, pH was found to be the main factor associated with the occurrence of ARGs in the aquatic environment, but it was also significantly associated with only nine ARGs. Among the detected heavy metals, only Cd and Zn showed significant correlations with the two ARGs in the water bodies of the three main rivers. It indicated that the pollution of ARGs in the three major rivers was in the initial stage, the detection abundance was low, the influence of environmental factors was small, and the interaction between ARGs seemed to be the main driving force. This study provides a scientific basis for further understanding the occurrence of ARGs and their influencing factors in a tropical island environment, and lays a foundation for subsequent management.
Collapse
Affiliation(s)
- Guangke Wei
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Hui Gao
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Shisheng Li
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Min Liu
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Ruijing Li
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yintian Zhang
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Qin Shu
- National Marine Environmental Monitoring Center, Dalian, 116023, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Wang
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Liwen Zhi
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Yingxu Zeng
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Guangshui Na
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China.
| |
Collapse
|
9
|
Wanyan R, Pan M, Mai Z, Xiong X, Su W, Yang J, Yu Q, Wang X, Han Q, Li H, Wang G, Wu S. Distribution and influencing factors of antibiotic resistance genes of crayfish (Procambarus clarkii) intestine in main crayfish breeding provinces in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159611. [PMID: 36273569 DOI: 10.1016/j.scitotenv.2022.159611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The propagation of antibiotic resistance genes (ARGs) has become a global public health concern. However, the distribution and influencing factors of ARGs, especially high-risk ARGs, in the gut of aquaculture animals remain unclear. Here, we employed 16S rRNA gene sequencing and high-throughput quantitative PCR techniques to determine crayfish gut microbiota and ARGs collected from 40 culture ponds in major crayfish farming provinces of China. We detected 74 ARGs in crayfish gut. Among them, the beta-lactamase and tetracycline resistance genes were dominant. The total ARG abundance was the highest in Hubei Province. High-risk ARGs were also found in crayfish gut, and ermB had the highest abundance and distributed in Anhui, Hubei, Henan and Jiangxi Province. In addition, opportunistic pathogens (Streptococcus, Aeromonas and Acinetobacter) might be potential hosts for ARGs, including high-risk ARGs. Finally, habitat, environmental factors (NO3-N, pH and temperature), microbial alpha diversity and mobile genetic elements (MGEs) showed significant influence on ARGs profiles. Generally, our results illustrate that ARGs are prevalent in crayfish gut and may pose potential risk to human health, which will help develop targeted strategies for the risk management and assessment of ARGs in the aquaculture.
Collapse
Affiliation(s)
- Ruijun Wanyan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Meijing Pan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Mai
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China
| | - Guitang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangong Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Wang X, Wan-Yan R, Yang J, Su W, Yu Q, Wang S, Han Q, Li X, Li H. Corpse decomposition of freshwater economic fish leads to similar resistomes and the enrichment of high-risk antibiotic resistance genes in different water types. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115944. [PMID: 35963071 DOI: 10.1016/j.jenvman.2022.115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Animal carcass decay produces many poisonous metabolites and chemical pollutants, which pose potential ecological risks to the aquatic environment and human health. However, the effects of animal cadaver decomposition on high-risk antibiotic resistance genes (ARGs) and potential pathogens in different water types are still unknown. In this study, fifteen freshwater economic fish (Carassius auratus) corpses were put into three types of water (i.e., pond water, tap water, and domestic sewage) for a 100-day decomposition. Next generation sequencing and HT-qPCR were used to illustrate how corpse decomposition affected microbial communities and ARG profiles. Our results revealed that fish corpse degradation caused similar resistomes and microbiome in different water types. MLSB (Macrolide-Lincosamide-Streptogramin B), β-lactamase, sulfonamide, tetracycline resistance genes and transposase genes in the experimental groups were increased. Among them, tetracycline resistance genes were enriched by 224 to 136,218-fold during the process of corpse degradation. Furthermore, high-risk ARGs (ermB, floR and dfrA1), which resist to MLSB, multidrug and sulfonamide respectively, were significantly enriched in the cadaver groups and had co-occurrence patterns with opportunistic pathogens, such as Bacteroidetes, which was more than 37 times in carcass groups than that in control groups. The study is able to draw a general conclusion that cadaver decomposition of freshwater economic fish deteriorates the aquatic environment by affecting high-risk ARGs and pathogenic microorganisms regardless of water types, which poses potential threats to human health. Therefore, timely management and treatment of animal carcasses is of great significance to the protection of water environment.
Collapse
Affiliation(s)
- Xiaochen Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Ruijun Wan-Yan
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Sijie Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qian Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Reddy S, Kaur K, Barathe P, Shriram V, Govarthanan M, Kumar V. Antimicrobial resistance in urban river ecosystems. Microbiol Res 2022; 263:127135. [DOI: 10.1016/j.micres.2022.127135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 12/07/2022]
|
12
|
Yitayew B, Woldeamanuel Y, Asrat D, Rahman A, Mihret A, Aseffa A, Olsson PE, Jass J. Antimicrobial resistance genes in microbiota associated with sediments and water from the Akaki river in Ethiopia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70040-70055. [PMID: 35583762 PMCID: PMC9512891 DOI: 10.1007/s11356-022-20684-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The spread of antimicrobial-resistant pathogens is a global health concern. Most studies report high levels of antimicrobial resistance genes (ARGs) in the aquatic environment; however, levels associated with sediments are limited. This study aimed to investigate the distribution of ARGs in the sediments and water of the Akaki river in Addis Ababa, Ethiopia. The diversity and abundance of 84 ARGs and 116 clinically important bacteria were evaluated from the sediments and water collected from five sites in the Akaki river. Most of the ARGs were found in the city close to anthropogenic activities. Water samples collected in the middle catchment of the river contained 71-75% of targeted ARGs, with genes encoding aminoglycoside acetyltransferase (aac(6)-Ib-cr), aminoglycoside adenylyl transferase (aadA1), β-lactamase (blaOXA-10), quinolone resistance S (qnrS), macrolide efflux protein A (mefA), and tetracycline resistance (tetA), were detected at all sampling sites. Much fewer ARGs were detected in all sediments, and those near the hospitals had the highest diversity and level. Despite the lower levels and diversity, there were no unique ARGs detected in the sediments that were also not detected in the waters. A wide range of clinically relevant pathogens were also detected in the Akaki river. The findings suggest that the water phase, rather than the sediments in the Akaki river, is a potential conduit for the spread of ARGs and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Berhanu Yitayew
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- School of Science and Technology, The Life Science Center - Biology, Örebro University, 701 82, Örebro, Sweden
| | | | - Daniel Asrat
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aminur Rahman
- School of Science and Technology, The Life Science Center - Biology, Örebro University, 701 82, Örebro, Sweden
| | - Adane Mihret
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Per-Erik Olsson
- School of Science and Technology, The Life Science Center - Biology, Örebro University, 701 82, Örebro, Sweden
| | - Jana Jass
- School of Science and Technology, The Life Science Center - Biology, Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
13
|
Guan Y, Xue X, Jia J, Li X, Xing H, Wang Z. Metagenomic assembly and binning analyses the prevalence and spread of antibiotic resistome in water and fish gut microbiomes along an environmental gradient. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115521. [PMID: 35716556 DOI: 10.1016/j.jenvman.2022.115521] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
The pristine river and urban river show an environmental gradient caused by anthropogenic impacts such as wastewater treatment plants and domestic wastewater discharges. Here, metagenomic and binning analyses unveiled antibiotic resistance genes (ARGs) profiles, their co-occurrence with metal resistance genes (MRGs) and mobile genetic elements (MGEs), and their host bacteria in water and Hemiculter leucisculus samples of the river. Results showed that the decrease of ARG abundances from pristine to anthropogenic regions was attributed to the reduction of the relative abundance of multidrug resistance genes in water microbiomes along the environmental gradient. Whereas anthropogenic impact contributed to the enrichment of ARGs in fish gut microbiomes. From pristine to anthropogenic water samples, the dominant host bacteria shifted from Pseudomonas to Actinobacteria. Potential pathogens Vibrio parahaemolyticus, Enterobacter kobei, Aeromonas veronii and Microcystis aeruginosa_C with multiple ARGs were retrieved from fish gut microbes in lower reach of Ba River. The increasing trends in the proportion of the contigs carrying ARGs (ARCs) concomitant with plasmids along environmental gradient indicated that plasmids act as efficient mobility vehicles to enhance the spread of ARGs under anthropogenic pressures. Moreover, the higher co-occurrence of ARGs and MRGs on plasmids revealed that anthropogenic impacts accelerated the co-transfer potential of ARGs and MRGs and the enrichment of ARGs. Partial least squares path modeling revealed anthropogenic contamination could shape fish gut antibiotic resistome mainly via affecting ARG host bacteria in water microbiomes, following by ARGs co-occurrence with MGEs and MRGs in gut microbiomes. This study enhanced our understanding of the mechanism of the anthropogenic activities on the transmission of antibiotic resistome in river ecosystem and emphasized the risk of ARGs and pathogens transferring from an aquatic environment to fish guts.
Collapse
Affiliation(s)
- Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuening Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haoran Xing
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
14
|
Wu Y, Qi D, Yao H, Ren J, Hu J, Lyu Y, Yang S, Sun W. Antibiotic resistome and its driving factors in an urban river in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156536. [PMID: 35679927 DOI: 10.1016/j.scitotenv.2022.156536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Urban rivers dynamically interfered by anthropogenic activities are considered as a vital reservoir of antibiotic resistance genes (ARGs). Here, a total of 198 ARGs and 12 mobile genetic elements (MGEs) were profiled in water and sediment from the Chaobai river, Beijing. The total abundances of ARGs (1.01 × 106-4.58 × 108 copies/L in water and 2.92 × 106-3.34 × 109 copies/g in sediment), which were dominated by beta-lactamase genes, exhibited significant seasonal variations (p < 0.05). Significant linear correlations between the total abundances of ARGs and MGEs were observed in both water and sediment (p < 0.01). Variance partitioning analysis disclosed that environmental variables (i.e., water temperature (WT), dissolved oxygen (DO), nutrients, metals, etc.) and antibiotics were the main contributors to the variations of ARGs and MGEs, and explained 55-80 % and 27-67 % of the total variations in ARGs and MGEs, respectively. The partial least-squares path model revealed the ARG abundances in water and sediment were affected by environmental variables and antibiotics both directly and indirectly but by MGEs directly. Moreover, random forest algorithm explored that WT, Ni, DO, Co, and polyether and macrolide antibiotics were the main drivers (>10 %) of ARGs dissemination in water, whereas the transposase genes of Tp614, tnpA, and IS613 were the main drivers of ARGs dissemination in both water and sediment. This study provides a comprehensive understanding of the driving factors for the ARGs dissemination in an urban river, which is of great significance for risk management of antibiotic resistome.
Collapse
Affiliation(s)
- Yang Wu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Dianqing Qi
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jiaoyang Ren
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jingrun Hu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Yitao Lyu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Shanqing Yang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
15
|
Guan Y, Jia J, Fan X, Li K, Wang Z. Anthropogenic impacts on antibiotic resistance genes and their hosts from pristine to urban river using metagenomic and binning approaches. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106221. [PMID: 35709638 DOI: 10.1016/j.aquatox.2022.106221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Driven by anthropogenic pressure, Antibiotic resistance genes (ARGs) could transfer from the environmental resistome into human commensals or even pathogens. The transport of ARGs through aquatic ecosystems is crucial and has attracted attention. Here, we employed metagenomic and binning to compare ARGs profiles, their co-occurrence with metal resistance genes (MRGs) and mobile genetic elements (MGEs), and their hosts between pristine and anthropogenic influenced rivers and explore the ecological mechanisms underlying the dissemination of ARGs induced by anthropogenic activities. The significantly increased relative abundance of macrolide-lincosamide-streptogramins, vancomycin, β-lactam and sulfonamide resistance genes along the environmental gradient from pristine to polluted sediments implied that anthropogenic impact aided the emergence and dissemination of certain ARGs. At the lower reach of the Ba River, the higher ratios for contigs carrying more than one ARG suggested that anthropogenic pollution favored the co-occurrence of multiple ARGs. Anthropogenic pressures also increased the relative abundance of advantaged hosts, including Chloroflexi, Firmicutes and Euryarchaeota. At the lower reach of Ba River, Romboutsia timonensis carrying multiple ARGs and ICEs were successfully recovered, posing a serious threat to human health by affecting the metabolism of gut microbiomes. And Methanothrix soehngenii affiliated to archaea carrying multiple ARGs, MRGs and ICEs were also recovered from the lower Ba River. The partial least squares path modeling revealed that MGEs were the most predominant factors inducing the ARG profiles, and the antibiotic resistance could be enriched by co-transfer with MRGs. Furthermore, environmental factors could impact the ARG profiles indirectly by first influencing the ARGs' hosts.
Collapse
Affiliation(s)
- Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiqi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Wang L, Chai B. Fate of Antibiotic Resistance Genes and Changes in Bacterial Community With Increasing Breeding Scale of Layer Manure. Front Microbiol 2022; 13:857046. [PMID: 35356511 PMCID: PMC8959713 DOI: 10.3389/fmicb.2022.857046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
The use of antimicrobials in intensive poultry production is becoming increasingly common because of its high throughput of meat and egg products. However, the profile of antibiotic resistance genes (ARGs) and the underlying mechanisms in different breeding scale farms were not fully explored. The study examined the profiles of ARGs in layer manure from three free-range and 12 intensive layer farms with different scales (N500, N5000, N10000, and N20000). A quantitative PCR (qPCR) array was used to quantify ARGs, and microbial community structure was analyzed by 16S rRNA gene sequencing. A total of 48 ARGs, belonging to seven major types, were identified in the layer manure samples, with sul2, tetM-01, and ermB being the predominant ones. The abundance, diversity, and mobility potential of ARGs in layer manure changed significantly with the increasing of the breeding scale. The abundances of total ARGs had significantly positive correlations with mobile genetic elements (MGEs), suggesting the mobility potential of ARGs in layer manure samples. Bacterial abundance did not show significant differences among the five group manure samples. However, bacterial diversity showed an increasing trend along the breeding scale. Pathogenic Bacteroidetes increased in the largest-scale layer manure samples and showed significant positive correlations with most ARGs. Network analysis revealed significant co-occurrence patterns between ARGs and microbial taxa, indicating ARGs had a wide range of bacterial hosts. Proteobacteria and Firmicutes were potential hosts for tetracycline and macrolide-lincosamide-streptogramin B (MLSB) resistant genes. Our results indicated that the expansion of the breeding scale of a farm promotes the abundance, diversity, and mobility potential of ARGs in layer manure.
Collapse
|