1
|
Li C, Wang H, Fu Y, Gentekaki E, Guo Y, Li L. Multiple biological responses and transcriptome plasticity of the model unicellular eukaryote Paramecium for cadmium toxicity aggravated by freshwater acidification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125725. [PMID: 39832636 DOI: 10.1016/j.envpol.2025.125725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Cadmium (Cd) pollution is a widespread threat to aquatic life, and ongoing freshwater acidification (FA) can be expected to interact with Cd compounds to disrupt freshwater ecosystems. However, the effects of FA on Cd biotoxicity remain unclear. Herein, the model ciliate Paramecium tetraurelia, a model unicellular eukaryotic organism, was used to explore the response to environmental relevant concentrations of Cd under acidification conditions. We show for the first time that exposure to acidified freshwater accelerated Cd bioaccumulation and enhanced Cd bioavailability in P. tetraurelia, suggesting the synergistic interaction of Cd and FA. The co-exposure greatly reduced the abundance and carbon biomass, altered lysosomal membrane stability, induced oxidative stress, and consumed more ATP in exposed ciliates. Transcriptome plasticity enabled P. tetraurelia to develop a Cd stress-adaptive transcriptional profile (upregulation of transport and detoxification and downregulation of energy metabolism) under acidification. With a concomitant inhibition in energy production, the exposed ciliates might have diverted the energy from growth and cell replication to compensate for the energetic cost from stress response and detoxification. Collectively, acidified freshwater could aggravate Cd toxicity, which, in turn, arouses the response strategy of ciliates to cope with stress, providing a mechanistic understanding of the interaction between freshwater acidification and Cd pollution in the basic trophic level ciliated protozoa in freshwater ecosystems.
Collapse
Affiliation(s)
- Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution,Marine College,Shandong University,Weihai,China
| | - Haitao Wang
- Laboratory of Marine Protozoan Biodiversity and Evolution,Marine College,Shandong University,Weihai,China
| | - Yu Fu
- Laboratory of Marine Protozoan Biodiversity and Evolution,Marine College,Shandong University,Weihai,China
| | - Eleni Gentekaki
- Department of Veterinary Medicine,University of Nicosia School of Veterinary Medicine, 2412,Nicosia,Cyprus
| | - Yulin Guo
- Laboratory of Marine Protozoan Biodiversity and Evolution,Marine College,Shandong University,Weihai,China
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution,Marine College,Shandong University,Weihai,China.
| |
Collapse
|
2
|
Demir G, Arar Ö, Arda M. Tripolyphosphate-functionalized cellulose: A green solution for cadmium contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125042. [PMID: 39343346 DOI: 10.1016/j.envpol.2024.125042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
This study introduces a highly efficient tripolyphosphate -tethered cellulose sorbent for cadmium (Cd2⁺) removal from aqueous solutions. Characterization through FTIR and SEM revealed the material's structural properties. The sorbent achieved 99% Cd2⁺ removal even at a minimal dosage of 0.05 g. Optimal sorption occurred within the pH range of 4-6, influenced by the sorbent's weak acidic functional groups. Rapid kinetics, reaching equilibrium within a minute, and a high sorption capacity (up to 18.03 mg/g at 50 °C) were observed. Langmuir isotherm modeling confirmed monolayer sorption, and thermodynamic studies indicated a spontaneous, endothermic process with increased randomness at the solid-liquid interface. Selectivity studies demonstrated strong Cd2⁺ removal performance in the presence of competing ions, with minimal interference from monovalent ions but notable effects from divalent ions. The sorbent exhibited consistent reusability over multiple cycles. XPS analysis conclusively established an ion exchange mechanism between Cd2⁺ and negatively charged P3O105- groups as the primary removal pathway. This research highlights the potential of TPP-tethered cellulose as a promising sorbent for effective Cd2⁺ remediation.
Collapse
Affiliation(s)
| | - Özgür Arar
- Chemistry Department, Ege University, Izmir, Turkey.
| | - Müşerref Arda
- Chemistry Department, Ege University, Izmir, Turkey.
| |
Collapse
|
3
|
Zhang Z, Huang R, Shen Z, Fan Y, Feng C, Bai Y. Hardness-Dependent Freshwater Quality Criteria for the Protection of Aquatic Organisms for Cadmium in China. TOXICS 2024; 12:892. [PMID: 39771107 PMCID: PMC11728563 DOI: 10.3390/toxics12120892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
Cadmium poses a significant threat to freshwater aquatic organisms and ecosystems, making it essential to establish regional freshwater quality criteria (FWQC) in China to safeguard these organisms. The toxicity database for cadmium covered 249 acute toxicity data from 52 species (seven phyla and 27 families) and 62 chronic toxicity data from 21 species (four phyla and 12 families). During short-term exposure, Morone saxatilis displayed the most sensitivity to cadmium, whereas Daphnia magna showed the most sensitivity in long-term exposure scenarios. Significant correlations were identified between water hardness and the toxicity data for cadmium, with the acute toxicity coefficient (KATD) at 1.0227 (n = 52, p < 0.05) and the chronic toxicity coefficient (KCTD) at 0.4983 (n = 21, p < 0.05). With the species sensitivity distribution method, the short-term freshwater quality criteria (S-FWQC) were derived with a normal distribution as the best fit (R2 0.9793), while the long-term freshwater quality criteria (L-FWQC) were calculated using a logistic distribution as the best fit (R2 0.9686). The formulas for the S-FWQC and L-FWQC were represented as 10(1.0227×lg(H)-1.5444) and 10(0.4983×lg(H)-1.7549), respectively, with water hardness serving as an independent variable. This study offers valuable insights for improving the management of cadmium to protect freshwater aquatic organisms in China.
Collapse
Affiliation(s)
- Zeya Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.Z.); (R.H.); (Z.S.); (Y.F.); (C.F.)
| | - Rui Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.Z.); (R.H.); (Z.S.); (Y.F.); (C.F.)
| | - Zhongjie Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.Z.); (R.H.); (Z.S.); (Y.F.); (C.F.)
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yili Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.Z.); (R.H.); (Z.S.); (Y.F.); (C.F.)
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.Z.); (R.H.); (Z.S.); (Y.F.); (C.F.)
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.Z.); (R.H.); (Z.S.); (Y.F.); (C.F.)
| |
Collapse
|
4
|
Xiao X, Zhao W, Shao Y, Hu C, Liu J, Zhang G, Yang F, Zhao J, Fu Y, Li L, Wang MQ, Zhou A. Environmental exposure to cadmium induces olfactory neurotoxicity in fire ants and the molecular basis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124945. [PMID: 39265771 DOI: 10.1016/j.envpol.2024.124945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Cadmium (Cd) exhibits widely olfactory toxicity to animals. We previously reported that Cd exposure induces the transcriptional dysregulation of olfactory marker proteins (OMPs) of the red imported fire ant Solenopsis invicta. However, it is still unclear how environmental Cd exposure-induced deregulation of OMPs affects the olfactory signal transduction and olfaction-driven social behavior of S. invicta. Here, we showed that S. invicta displayed dull sensory perception on bait in Cd-contaminated areas and dietary Cd ingestion by S. invicta reduced the bait search efficiency. We hypothesize that deregulation of OMPs by Cd exposure blocks the olfactory signal transduction in fire ants. Our results indicated the odor binding protein 14 (SiOBP14) was consistently inhibited in antennal sensilla of fire ants across Cd exposure at 0.5, 5 and 50 mg/kg. Function analysis in vitro and in vivo demonstrated that SiOBP14 is essential in perception of S. invicta to bait odorants. Cd-exposed fire ants showed weak odorant receptor neurons (ORNs) chemosensory signaling and electroantennogram (EAG) response. Moreover, Cd exposure repeals the preference of S. invicta to the active bait odorants, including 2-methyltetrahydrofuran-3-one, 2-methyl-3-furanthiol and 4,5-dimethylthiazole, and even triggers a behavioral transition from preference to repellence. These results indicate that Cd exposure inhibits the specific OMP expression and disrupts olfactory signal transduction, thereby inducing dull sensory perception of S. invicta to bait odorants. The findings provide new implications for monitoring and control of agricultural insect pests in heavy metal polluted areas.
Collapse
Affiliation(s)
- Xiaohui Xiao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenzhen Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yikang Shao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changyuan Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinlong Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoqing Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuxiang Yang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhao
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yueguan Fu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Lei Li
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aiming Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Jamil A, Ahmad A, Irfan M, Hou X, Wang Y, Chen Z, Liu X. Global microplastics pollution: a bibliometric analysis and review on research trends and hotspots in agroecosystems. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:486. [PMID: 39509054 DOI: 10.1007/s10653-024-02274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
The prevalence of microplastics (MPs) in agricultural ecosystems poses a notable threat to dynamics of soil ecosystems, crop productivity, and global food security. MPs enter agricultural ecosystems from various sources and have considerable impacts on the physiochemical properties soil, soil organisms and microbial communities, and plants. However, the intensity of these impacts can vary with the size, shape, types, and the concentrations of MPs in the soil. Besides, MPs can enter food chain through consummation of crops grown on MPs polluted soils. In this study, we conducted a bibliometric analysis of 1636 publications on the effects of MPs on agricultural ecosystems from 2012 to May 2024. The results revealed a substantial increase in publications over the years, and China, the USA, Germany, and India have emerged as leading countries in this field of research. Social network analysis identified emerging trends and research hotspots. The latest burst keywords were contaminants, biochar, polyethylene microplastics, biodegradable microplastics, antibiotic resistance genes, and quantification. Furthermore, we have summarized the effects of MPs on various components of agricultural ecosystems. By integrating findings from diverse disciplinary perspectives, this study provides a valuable insight into the current knowledge landscape, identifies research gaps, and proposes future research directions to effectively tackle the intricate challenges associated with MPs pollution in agricultural environments.
Collapse
Affiliation(s)
- Asad Jamil
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Ambreen Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Ziwei Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
6
|
Chen M, Liu H, Pan J, He S, Hong Y, Wang S, Zhou Y, Chen D, Su M. Enhanced cadmium removal by a magnetic potassium ferrocyanide framework: Performance and mechanism study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116702. [PMID: 39018732 DOI: 10.1016/j.ecoenv.2024.116702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
Polluted environments often contain large amounts of toxic metals, such as cadmium, which pose a major threat to ecosystems and public health. Contamination by cadmium and its compounds is often observed in areas surrounding zinc mining sites and electroplating factories, and the control of cadmium pollution is essential for environmental safety and health. In this study, a highly efficient and straightforward separation strategy for K4Fe(CN)6@Fe3O4 nanocomposites is successfully developed to capture the Cd ions in the water environment. Batch adsorption experiments revealed that K4Fe(CN)6@Fe3O4 exhibited a high cadmium removal rate (greater than 98 %) at a pH level of 6.0 and solid-liquid ratio of 1.0 g/L at room temperature (298 K). Kinetic analysis revealed that the adsorption process followed a pseudo-second-order model and cadmium was rapidly removed in the first 10 min, with chemisorption dominating the capture of Cd2+ by K4Fe(CN)6@Fe3O4. Adsorption isotherms revealed a heterogeneous adsorption behavior, with a maximum adsorption capacity of 40.78 mg/g. The intrinsic adsorption of Cd2+ by K4Fe(CN)6@Fe3O4 occurring primarily through electrostatic interaction and ion exchange. In addition, K4Fe(CN)6@Fe3O4 exhibited an excellent regeneration capacity. Therefore, integrating Fe3O4 into the metal cyanide not only provided the composite material with excellent chemical stability and selective adsorption sites for Cd2+, but also facilitated subsequent sorbent collection and recovery. Overall, this study presents a simple and feasible approach for integrating Fe3O4 into potassium ferrocyanide frameworks for efficient cadmium removal from contaminated water.
Collapse
Affiliation(s)
- Miaoling Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Heyao Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiaqi Pan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shaoming He
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yang Hong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shuwen Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ying Zhou
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Minhua Su
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Omoregie AI, Alhassan M, Basri HF, Muda K, Campos LC, Ojuri OO, Ouahbi T. Bibliometric analysis of research trends in biogranulation technology for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50098-50125. [PMID: 39102140 DOI: 10.1007/s11356-024-34550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Inadequate management and treatment of wastewater pose significant threats, including environmental pollution, degradation of water quality, depletion of global water resources, and detrimental effects on human well-being. Biogranulation technology has gained increasing traction for treating both domestic and industrial wastewater, garnering interest from researchers and industrial stakeholders alike. However, the literature lacks comprehensive bibliometric analyses that examine and illuminate research hotspots and trends in this field. This study aims to elucidate the global research trajectory of scientific output in biogranulation technology from 1992 to 2022. Utilizing data from the Scopus database, we conducted an extensive analysis, employing VOSviewer and the R-studio package to visualize and map connections and collaborations among authors, countries, and keywords. Our analysis revealed a total of 1703 journal articles published in English. Notably, China emerged as the leading country, Jin Rencun as the foremost author, Bioresource Technology as the dominant journal, and Environmental Science as the prominent subject area, with the Harbin Institute of Technology leading in institutional contributions. The most prominent author keyword identified through VOSviewer analysis was "aerobic granular sludge," with "sequencing batch reactor" emerging as the dominant research term. Furthermore, our examination using R Studio highlighted "wastewater treatment" and "sewage" as notable research terms within the field. These findings underscore a diverse research landscape encompassing fundamental aspects of granule formation, reactor design, and practical applications. This study offers valuable insights into biogranulation potential for efficient wastewater treatment and environmental remediation, contributing to a sustainable and cleaner future.
Collapse
Affiliation(s)
- Armstrong Ighodalo Omoregie
- Centre for Borneo Regionalism and Conservation, School of Built Environment, University of Technology Sarawak, No. 1 Jalan University, 96000, Sibu, Sarawak, Malaysia.
| | - Mansur Alhassan
- Center of Hydrogen Energy, Institute of Future Energy, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Hazlami Fikri Basri
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Khalida Muda
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Luiza C Campos
- Department of Civil, Environmental & Geomatic Engineering, Faculty of Engineering Science, University College of London, Gower Street, London, WC1E 6BT, UK
| | - Oluwapelumi Olumide Ojuri
- Built Environment and Sustainable Technologies, Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Tariq Ouahbi
- LOMC, UMR CNRS 6294, Université Le Havre Normandie, Normandie Université, 53 Rue de Prony, 76058, Le Havre Cedex, France
| |
Collapse
|
8
|
Motta CM, Rosati L, Cretì P, Montinari MR, Denre P, Simoniello P, Fogliano C, Scudiero R, Avallone B. Histopathological effects of long-term exposure to realistic concentrations of cadmium in the hepatopancreas of Sparus aurata juveniles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106858. [PMID: 38325058 DOI: 10.1016/j.aquatox.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
In recent decades, cadmium has emerged as an environmental stressor in aquatic ecosystems due to its persistence and toxicity. It can enter water bodies from various natural and anthropogenic sources and, once introduced into aquatic systems, can accumulate in sediments and biota, leading to bioaccumulation and biomagnification in the food chain. For this reason, the effects of cadmium on aquatic life remain an area of ongoing research and concern. In this paper, a multidisciplinary approach was used to assess the effects of long-term exposure to an environmental concentration on the hepatopancreas of farmed juveniles of sea bream, Sparus aurata. After determining metal uptake, metallothionein production was assessed to gain insight into the organism's defence response. The effects were also assessed by histological and ultrastructural analyses. The results indicate that cadmium accumulates in the hepatopancreas at significant concentrations, inducing structural and functional damage. Despite the parallel increase in metallothioneins, fibrosis, alterations in carbohydrate distribution and endocrine disruption were also observed. These effects would decrease animal fitness although it did not translate into high mortality or reduced growth. This could depend on the fact that the animals were farmed, protected from the pressure deriving from having to search for food or escape from predators. Not to be underestimated is the return to humans, as this species is edible. Understanding the behaviour of cadmium in aquatic systems, its effects at different trophic levels and the potential risks to human health from the consumption of contaminated seafood would therefore be essential for informed environmental management and policy decisions.
Collapse
Affiliation(s)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Patrizia Cretì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Rosa Montinari
- Chair of History of Medicine, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Pabitra Denre
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Li X, Wu Q, Chen D, Bai Y, Yang Y, Xu S. Environment-relevant concentrations of cadmium induces necroptosis and inflammation; baicalein maintains gill homeostasis through suppressing ROS/ER stress signaling in common carps (Cyprinus carpio L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122805. [PMID: 37913980 DOI: 10.1016/j.envpol.2023.122805] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Cadmium (Cd) is a major contaminant in natural environments and exerts adverse effects on aquatic biota at low concentrations. Gill is as vital respiratory organ and may cause pollutants to enter fish during gas exchange. Baicalein (BAI), as a kind of flavonoids, possess antioxidant properties through inactivating free radicals. To confirm the potential effects and approaches of BAI addition in maintaining the gill stability, 90 common carps (Cyprinus carpio L.) were selected and randomly divided into water environment exposure group (0.22 mg/L Cd) and/or feed added with 0.10 g/kg BAI for 30 days. The analysis of ion content in serum showed that Cd exposure disturbed ion homeostasis, and BAI could reduce serum Cd concentration. The histopathological results of gills showed that Cd exposure caused gill tissue lesions and structural damage, and BAI feeding effectively alleviated this damage. In addition, BAI could enhance antioxidant activity and activate Nrf2/HO-1 axis, thereby reducing oxidative stress and endoplasmic reticulum (ER) stress. Moreover, BAI lightened cytokine imbalance, inflammatory response, and necroptosis. Overall, the results indicated that BAI feeding could maintain gill homeostasis against Cd poisoning via the ROS/ER stress signaling. This trial revealed the properties of BAI resistance to metal Cd in aquaculture and partially elucidated its mechanism.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Qian Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Dan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yichen Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuhong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
10
|
Gao Z, Wang Y, Wang H, Li X, Xu Y, Qiu J. Recent Aptamer-Based Biosensors for Cd 2+ Detection. BIOSENSORS 2023; 13:612. [PMID: 37366977 DOI: 10.3390/bios13060612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Cd2+, a major environmental pollutant, is heavily toxic to human health. Many traditional techniques are high-cost and complicated; thus, developing a simple, sensitive, convenient, and cheap monitoring approach is necessary. The aptamer can be obtained from a novel method called SELEX, which is widely used as a DNA biosensor for its easy acquisition and high affinity of the target, especially for heavy metal ions detection, such as Cd2+. In recent years, highly stable Cd2+ aptamer oligonucleotides (CAOs) were observed, and electrochemical, fluorescent, and colorimetric biosensors based on aptamers have been designed to monitor Cd2+. In addition, the monitoring sensitivity of aptamer-based biosensors is improved with signal amplification mechanisms such as hybridization chain reactions and enzyme-free methods. This paper reviews approaches to building biosensors for inspecting Cd2+ by electrochemical, fluorescent, and colorimetric methods. Finally, many practical applications of sensors and their implications for humans and the environment are discussed.
Collapse
Affiliation(s)
- Zihan Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yin Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haijian Wang
- Hangzhou Alltest Biotech Co., Ltd., Hangzhou 310000, China
| | - Xiangxiang Li
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Youyang Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jieqiong Qiu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
11
|
Marini HR, Bellone F, Catalano A, Squadrito G, Micali A, Puzzolo D, Freni J, Pallio G, Minutoli L. Nutraceuticals as Alternative Approach against Cadmium-Induced Kidney Damage: A Narrative Review. Metabolites 2023; 13:722. [PMID: 37367879 DOI: 10.3390/metabo13060722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is the kidney, where it accumulates. In the present narrative review, we assessed experimental and clinical data dealing with the mechanisms of kidney morphological and functional damage caused by Cd and the state of the art about possible therapeutic managements. Intriguingly, skeleton fragility related to Cd exposure has been demonstrated to be induced both by a direct Cd toxic effect on bone mineralization and by renal failure. Our team and other research groups studied the possible pathophysiological molecular pathways induced by Cd, such as lipid peroxidation, inflammation, programmed cell death, and hormonal kidney discrepancy, that, through further molecular crosstalk, trigger serious glomerular and tubular injury, leading to chronic kidney disease (CKD). Moreover, CKD is associated with the presence of dysbiosis, and the results of recent studies have confirmed the altered composition and functions of the gut microbial communities in CKD. Therefore, as recent knowledge demonstrates a strong connection between diet, food components, and CKD management, and also taking into account that gut microbiota are very sensitive to these biological factors and environmental pollutants, nutraceuticals, mainly present in foods typical of the Mediterranean diet, can be considered a safe therapeutic strategy in Cd-induced kidney damage and, accordingly, could help in the prevention and treatment of CKD.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Antonio Micali
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
12
|
Jia X, Pan Y, Zhu X. Salinization and heavy metal cadmium impair growth but have contrasting effects on defensive colony formation of Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160693. [PMID: 36481135 DOI: 10.1016/j.scitotenv.2022.160693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Driven by anthropogenic activities, freshwater salinization has become an emerging global environmental issue. Recent studies indicate that salinization increases the mobility of heavy metals in soil and causes higher flux into surface waterbodies. The present study assessed the combined effects of salinization (0, 3, 6 PSU) and the heavy metal Cd2+ (0, 0.2, 0.4 mg L-1) on the anti-grazing colony formation and population growth of Scenedesmus obliquus, a common freshwater alga. The results showed that the increase in salinity promoted colony formation of S. obliquus with or without the presence of grazing cues and, in contrast, Cd2+ contamination depressed the defensive colony formation of S. obliquus to Daphnia filtrate. The increase in both salinity and Cd2+ concentration depressed the population growth of S. obliquus, including impaired photosynthesis and a decreased population growth rate. Salinization moderated the negative effects of Cd2+ on defensive colony formation of S. obliquus, suggesting increased absorption of Cd2+ ions by a thicker outer layer of the algal cell wall under saltier conditions. As a result, larger defensive colonies of S. obliquus under freshwater salinization may cause higher bioaccumulation of heavy metals by algal cells and heavier influence on zooplankton. This study provides evidence that freshwater salinization could interfere with plankton interactions by affecting algal defense and growth, which may lead to bottom-up cascading effects on freshwater food webs.
Collapse
Affiliation(s)
- Xuanhe Jia
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| | - Yueqiang Pan
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| | - Xuexia Zhu
- The First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, 6 Xianxialing Road, Qingdao 266061, China; College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| |
Collapse
|
13
|
Alonso Á. Post-exposure Period as a key Factor to Assess Cadmium Toxicity: Lethal vs. Behavioral Responses. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:41. [PMID: 36652007 PMCID: PMC9849298 DOI: 10.1007/s00128-022-03651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/09/2022] [Indexed: 06/17/2023]
Abstract
The exposure of animals to pollution in ecosystems is not always chronic. Toxicants can remain in aquatic ecosystems for a short-term. To improve the extrapolation of laboratory results to natural scenarios the inclusion of post-exposure periods is a relevant issue. The present study focuses on the assessment of cadmium toxicity on survival and behavior of the aquatic snail Potamopyrgus antipodarum (Tateidae, Mollusca) during exposure and post-exposure. Animals were exposed for 48 h to cadmium (0.05, 0.14, 0.44 and 1.34 mg Cd/L) and 168 h of post-exposure. During the post-exposure period an increase in mortality in all concentrations was observed. The effects observed during the post-exposure period on the LC50 and EC50 were significant. During the post-exposure, behavior showed a clear recovery in surviving animals exposed to 0.44 mg Cd/L. Animals exposed to 0.05 mg Cd/L did not show differences with control. Therefore, mortality after exposure should be included in the ecotoxicological bioassays for a more realistic estimation of the cadmium effects. To assess the degree of animal recovery after cadmium exposure, behaviour has been shown as an adequate parameter.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza San Diego s/n, 28801, Alcalá de Henares, Spain.
| |
Collapse
|
14
|
Lu L, Ni R. Bibliometric analysis of global research on polycyclic aromatic hydrocarbons and health risk between 2002 and 2021. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84034-84048. [PMID: 36241831 DOI: 10.1007/s11356-022-23047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
During the last 20 years, the association between polycyclic aromatic hydrocarbons (PAHs) and health risk has become one of the hotspots in the fields of public health and the environment. A bibliometric study of 1392 research articles retrieved from the Web of Science Core Collection (WoSCC) published between 2002 and 2021 was performed to give an in-depth statistical evaluation of research progress and future trends on PAHs and health risk (PHR). According to the findings, the annual output of significant scientific papers increased exponentially. China ranked first among the 86 nations in terms of the number of publications (NP), followed by the USA and India. Logistic regression analysis showed that there was a positive relationship between the second tertile of 180-day usage count (AOR = 1.62; 95% CI: 1.16-2.26) and increased odds of open access publishing after adjustment for the confounders, indicating that open access papers on PHR were more preferred over the preceding 6 months than non-open access articles. The most popular terms were "PAHs," "risk assessment," and "source identification." According to the bibliometric study, the research hotspots that require more exploration include identifying PAH sources in media such as soil, water, dust, and food and evaluating their linkages to health hazards using appropriate risk models. Understanding the environmental behavior, bioavailability, and health concerns of PAHs and their derivatives in various media is critical for environmental and public health protection. This paper provides an overview of current research status and future perspectives for PHR research.
Collapse
Affiliation(s)
- Lingyi Lu
- Xuhui District Center for Disease Control and Prevention, No. 50 Yongchuan Road, Shanghai, 200237, China
| | - Rong Ni
- Xuhui District Center for Disease Control and Prevention, No. 50 Yongchuan Road, Shanghai, 200237, China.
| |
Collapse
|
15
|
Omoregie AI, Muda K, Ojuri OO, Hong CY, Pauzi FM, Ali NSBA. The global research trend on microbially induced carbonate precipitation during 2001-2021: a bibliometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89899-89922. [PMID: 36369439 DOI: 10.1007/s11356-022-24046-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Microbially induced carbonate precipitation (MICP) is a remarkable method that creates sustainable cementitious binding material for use in geotechnical/structural engineering and environmental engineering. This is due to the increasing demand for alternative environmentally friendly technologies and materials that result in minimal or zero carbon footprint. In contrast to the previously published literature, through bibliometric analysis, this review paper focuses on the current prospects and future research trends of MICP technology via the Scopus database and VOSviewer analysis. The objective of the study was to determine the annual publications and citations trend, most contributing countries, the leading journals, prolific authors, productive institutions, funding sponsors, trending author keywords, and research directions of MICP. There were a total of 1058 articles published from 2001 to 2021 on MICP. The result demonstrated that the volume of publications is increasing. China, Construction and Building Materials, Satoru Kawasaki, Nanyang Technological University, and the National Natural Science Foundation of China are the leading country, journal, author, institution, and funding sponsor in terms of total publications. Through the co-occurrence analysis of the author keywords, MICP was revealed to be the most frequently used author keyword with 121 occurrences, a total link strength of 213, and 152 links to other author keywords. Furthermore, co-occurrence analysis of text data revealed that researchers are concentrating on four important research areas: precipitation, MICP, compressive strength, and biomineralization. This review can provide information to researchers that can lead to novel ideas and research collaboration or engagement on MICP technology.
Collapse
Affiliation(s)
- Armstrong Ighodalo Omoregie
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Khalida Muda
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Oluwapelumi Olumide Ojuri
- Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Ching Yi Hong
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Farhan Mohd Pauzi
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nur Shahidah Binti Aftar Ali
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
16
|
Yang F, Zhang G, Liu J, Duan S, Li L, Lu Y, Wang MQ, Zhou A. Sublethal Exposure to Cadmium Induces Chemosensory Dysfunction in Fire Ants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12440-12451. [PMID: 35944015 PMCID: PMC9454817 DOI: 10.1021/acs.est.2c03108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Ants easily accumulate cadmium (Cd) from the food web in terrestrial ecosystems. Cd contamination may cause olfactory dysfunction and consequently disorders in the social behavior of ants. To explore the molecular mechanism underlying the effect of Cd exposure on the chemosensory process of ants, we characterized the Cd-induced variations in the expression of genes involved in chemoreception and electrophysiological and behavioral sensitivity to semiochemicals by using the red imported fire ant, Solenopsis invicta, as a model system. As a result, Cd exposure increased Cd accumulation and decreased the survival rate of S. invicta. Cd exposure altered the expression profiles of odor binding protein genes of S. invicta (SiOBPs). Specifically, SiOBP15 protein expression was upregulated upon Cd exposure. Both SiOBP7 and SiOBP15 exhibited high binding affinities to limonene, nonanal, and 2,4,6-trimethylpyridine. S. invicta exposed to Cd showed less sensitive electrophysiological and behavioral response to the three chemicals but exhibited sensitive perception to undecane. Silencing of SiOBP7 and SiOBP15 abolished the behavioral response of S. invicta to nonanal and undecane, respectively, suggesting that SiOBP7 and SiOBP15 play essential roles in the chemoreception of S. invicta. In general, our results suggest that Cd contamination may interfere with olfactory signal transduction by altering the expression of SiOBPs, consequently evoking chemosensory dysfunction in fire ants.
Collapse
Affiliation(s)
- Fuxiang Yang
- Hubei
Insect Resources Utilization and Sustainable Pest Management Key Laboratory,
College of Plant Science and Technology,
Huazhong Agricultural University, Wuhan 430070, China
| | - Guoqing Zhang
- Hubei
Insect Resources Utilization and Sustainable Pest Management Key Laboratory,
College of Plant Science and Technology,
Huazhong Agricultural University, Wuhan 430070, China
| | - Jinlong Liu
- Hubei
Insect Resources Utilization and Sustainable Pest Management Key Laboratory,
College of Plant Science and Technology,
Huazhong Agricultural University, Wuhan 430070, China
| | - Shuanggang Duan
- Hubei
Insect Resources Utilization and Sustainable Pest Management Key Laboratory,
College of Plant Science and Technology,
Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Li
- Environment
and Plant Protection Institute, Chinese
Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongyue Lu
- Department
of Entomology, South China Agricultural
University, Guangzhou 510642, China
| | - Man-Qun Wang
- Hubei
Insect Resources Utilization and Sustainable Pest Management Key Laboratory,
College of Plant Science and Technology,
Huazhong Agricultural University, Wuhan 430070, China
| | - Aiming Zhou
- Hubei
Insect Resources Utilization and Sustainable Pest Management Key Laboratory,
College of Plant Science and Technology,
Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Ahmad T, Amjad M, Iqbal Q, Batool A, Noor A, Jafir M, Hussain H, Irfan M. Occurrence of Microplastics and Heavy Metals in Aquatic and Agroecosystem: A Case Study. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:266-271. [PMID: 35451601 DOI: 10.1007/s00128-022-03523-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
A case study was conducted to evaluate the microplastics and heavy metals distribution in Pakistani farmland. Wastewater, soil, and vegetable samples were collected from four locations that received raw effluents for irrigation in the Faisalabad district. The average MPs abundances found in soil was 2790.75 items/kg, FSD-S has higher MPs (3865 items/kg) which is almost 34.62% from the total. However, the highest metal pollution (3.666 mg/kg) was recorded in the FSD-E zone, Cr showed the highest transfer factor about 34.24% in FSD-N in comparison with other sites. This research establishes a benchmark for estimating the environmental harm posed by microplastics and heavy metals in this rapidly emerging field of study.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Department of Horticulture, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Muhammad Amjad
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Qumer Iqbal
- Fiblast, LLC, 1602 Mizell Road Tuskegee, Alabama, 36083, USA
| | - Asmat Batool
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Anam Noor
- Department of Horiculture, BZU, Multan, 60800, Pakistan
| | - Muhammad Jafir
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Hammad Hussain
- Department of Horticulture, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China.
| |
Collapse
|
18
|
Zhang Y, Hu B, Qian X, Xu G, Jin X, Chen D, Tang J, Xu L. Transcriptomics-based analysis of co-exposure of cadmium (Cd) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) indicates mitochondrial dysfunction induces NLRP3 inflammasome and inflammatory cell death in renal tubular epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113790. [PMID: 35753275 DOI: 10.1016/j.ecoenv.2022.113790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution often releases multiple contaminants resulting in as yet largely uncharacterized additive toxicities. Cadmium (Cd) is a widespread pollutant that induces nephrotoxicity in animal models and humans. However, the combined effect of Cd in causing nephrotoxicity with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a typical congener of polybrominated diphenyl ethers (PBDEs), has not been evaluated and mechanisms are not completely clear. Here, we applied transcriptome sequencing analysis to investigate the combined toxicity of Cd and BDE-47 in the renal tubular epithelial cell lines HKCs. Cd or BDE-47 exposure decreased cell viability in a dose-dependent manner, and exhibited cell swelling and rounding similar to necrosis, which was exacerbated by co-exposure. Transcriptomic analysis revealed 2191, 1331 and 3787 differentially-expressed genes following treatment with Cd, BDE-47 and co-exposure, respectively. Interestingly, functional annotation and enrichment analyses showed involvement of pathways for oxidative stress, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and inflammatory cell death for all three treatments. Examination of indices of mitochondrial function and oxidative stress in HKC cells showed that the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and intracellular calcium ion concentration [Ca2+]i were elevated, while superoxide dismutase (SOD) and mitochondrial membrane potential (MMP) were decreased. The ratio of apoptotic and necrotic cells and intracellular lactate dehydrogenase (LDH) release were increased by Cd or BDE-47 exposure, and was aggravated by co-exposure, and was attenuated by ROS scavenger N-Acetyl-L-cysteine (NAC). NLRP3 inflammasome and pyroptosis pathway-related genes of NLRP3, adaptor molecule apoptosis-associated speck-like protein (ASC), caspase-1, interleukin-18 (IL-18) and IL-1β were elevated, while gasdermin D (GSDMD) was down-regulated, and protein levels of NLRP3, cleaved caspase-1 and cleaved GSDMD were increased, most of which were relieved by NAC. Our data demonstrate that exposure to Cd and BDE-47 induces mitochondrial dysfunction and triggers NLRP3 inflammasome and GSDMD-dependent pyroptosis leading to nephrotoxicity, and co-exposure exacerbates this effect, which could be attenuated by inhibiting ROS. This study provides a further mechanistic understanding of kidney damage, and co-exposure impact is worthy of concern and should be considered to improve the accuracy of environmental health assessment.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Bo Hu
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xiaolan Qian
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xin Jin
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Jie Tang
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Long Xu
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
19
|
Cai Y, Zhu K, Shen L, Ma J, Bao L, Chen D, Wei L, Wei N, Liu B, Wu Y, Chen S. Evolved Biosensor with High Sensitivity and Specificity for Measuring Cadmium in Actual Environmental Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10062-10071. [PMID: 35762704 DOI: 10.1021/acs.est.2c00627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial biosensors have great potential in contaminant detection for sensitivity, specificity, cost-effectiveness, and easy operation. However, the existing cadmium-responsive bacterial biosensors cannot meet the real-world detection requirements due to lack of sensitivity, specificity, and anti-interference capability. This study aimed to develop a bacterial biosensor for detecting the total and extractable cadmium in actual environmental samples. We constructed the cadmium-responsive biosensor with the regulatory element (cadmium resistance transcriptional regulatory, CadR) and the reporting element (GFP) and improved its performance by directed evolution. The mutant libraries of biosensors were generated by error-prone PCR and screened by continuous five-round fluorescence-activated cell sorting (FACS), and a bacteria variant epCadR5 with higher performance was finally isolated. Biosensor fluorescence intensity was measured by a microplate reader, and results showed that the evolved cadmium-responsive bacterial biosensor was of high sensitivity and specificity in detecting trace cadmium, with a detection limit of 0.45 μg/L, which is 6.8 times more specific to cadmium than that of the wild-type. Furthermore, microscopic qualitative analysis results showed that the bacteria could produce fluorescence response in a cadmium-contaminated soil matrix, and quantitative analysis results showed that the values of cadmium from epCadR5 bacteria were close to that from inductively coupled plasma-mass spectrometry. These results suggest that the biosensor may have a broad application prospect in the detection of cadmium-contaminated soil and water.
Collapse
Affiliation(s)
- Yeshen Cai
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Kaili Zhu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Liang Shen
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jie Ma
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Lingzhi Bao
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Dongdong Chen
- Institute of Environmental Physics and Technology, Anhui University, Hefei 230039, China
| | - Liangchen Wei
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Nan Wei
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Binmei Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yuejin Wu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shaopeng Chen
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
20
|
Kamilya T, Gautam RK, Muthukumaran S, Navaratna D, Mondal S. Technical advances on current research trends and explore the future scope on nutrient recovery from waste-streams: a review and bibliometric analysis from 2000 to 2020. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49632-49650. [PMID: 35597831 DOI: 10.1007/s11356-022-20895-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
An exponentially growing global population has led to an increase in nutrient pollution in different aqueous bodies. Although different processes have successfully removed nutrients from wastewater on a large scale, a limited number of studies have been reported on efficiency, cost-effectiveness, and future potential of physical, chemical, and biological nutrient recovery methods to overcome the depletion of natural resources. Therefore, researchers need to understand current research trends by applying different approaches to investigate higher efficient nutrient recovery technologies. In this article, the research patterns and in-depth review of various nutrient recovery processes have been circumscribed with the application of bibliometric and attractive index (AAI) vs. activity index (AI) analysis. The performance, advantages, limitations, and future prospects of different nutrient recovery methods have also been addressed. More than 70% of study publications were published in the last decade in chemical and biological processes, which might be related to more rigorous effluent quality rules and increasing water pollution. The future prediction in the field of nutrient recovery has been predicted using S-curve analysis, and it was found that the number of publications in the saturated state in chemical methods was highest. However, the growth rate of the biological-based nutrient recovery methods is greater, which may be because of their huge research scope, cost-effectiveness, and easy operation methods. This study can assist researchers in understanding the current research scenario in nutrient recovery techniques and provide the research scope in nutrient recovery from wastewater in the future.
Collapse
Affiliation(s)
- Tuhin Kamilya
- Department of Earth and Environmental Studies, National Institute of Technology Durgapur, West Bengal, India
| | - Rajneesh Kumar Gautam
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, Australia
| | - Shobha Muthukumaran
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, Australia
| | - Dimuth Navaratna
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, Australia
| | - Sandip Mondal
- Department of Earth and Environmental Studies, National Institute of Technology Durgapur, West Bengal, India.
| |
Collapse
|
21
|
Risk assessment of heavy metal exposure via consumption of fish and fish products from the retail market in Bosnia and Herzegovina. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Liu W, Qiu H, Yan Y, Xie X. Acute Cd Toxicity, Metal Accumulation, and Ion Loss in Southern Catfish ( Silurus meridionalis Chen). TOXICS 2021; 9:toxics9090202. [PMID: 34564353 PMCID: PMC8473079 DOI: 10.3390/toxics9090202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
The amounts of cadmium in multiple organs and the amounts of Na+ and Ca2+ in the carcass were measured in dead and surviving southern catfish exposed to different concentrations of Cd. The 96 h median lethal concentration was 6.85 mg/L. The Cd content and Cd accumulation rate were positively correlated with Cd exposure concentrations, and there were significant differences between dead and surviving individuals, indicating that both Cd content in tissues and Cd accumulation rates were correlated with mortality. Cd levels in the liver of dead fish were saturated. A lethal threshold for Cd concentration in the whole fish was obtained. Bioconcentration factors for Cd did not decrease with increasing exposure. Acute exposure to waterborne Cd caused a significant decrease in the ion content of the fish carcass. There was a significant difference between the Na+ content of the carcass of dead fish (34.54 μmol/g wet weight) and surviving fish (59.34 μmol/g wet weight), which was not the case with the Ca2+ content, indicating that the lethal toxicity of Cd was probably related to the decrease in Na+ content. Collectively, these results suggest that whole-fish Cd concentration and carcass Na+ content can be useful indicators of fish acutely exposed to Cd.
Collapse
Affiliation(s)
- Wenming Liu
- Correspondence: (W.L.); (X.X.); Tel.: +86-23-6825-3505 (W.L. & X.X.)
| | | | | | - Xiaojun Xie
- Correspondence: (W.L.); (X.X.); Tel.: +86-23-6825-3505 (W.L. & X.X.)
| |
Collapse
|