1
|
Warren CE, Campbell KM, Kirkham MN, Saito ER, Remund NP, Cayabyab KB, Kim IJ, Heimuli MS, Reynolds PR, Arroyo JA, Bikman BT. The Effect of Diesel Exhaust Particles on Adipose Tissue Mitochondrial Function and Inflammatory Status. Int J Mol Sci 2024; 25:4322. [PMID: 38673906 PMCID: PMC11050398 DOI: 10.3390/ijms25084322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Air pollution poses a significant global health risk, with fine particulate matter (PM2.5) such as diesel exhaust particles (DEPs) being of particular concern due to their potential to drive systemic toxicities through bloodstream infiltration. The association between PM2.5 exposure and an increased prevalence of metabolic disorders, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM), is evident against a backdrop of rising global obesity and poor metabolic health. This paper examines the role of adipose tissue in mediating the effects of PM2.5 on metabolic health. Adipose tissue, beyond its energy storage function, is responsive to inhaled noxious stimuli, thus disrupting metabolic homeostasis and responding to particulate exposure with pro-inflammatory cytokine release, contributing to systemic inflammation. The purpose of this study was to characterize the metabolic response of adipose tissue in mice exposed to either DEPs or room air (RA), exploring both the adipokine profile and mitochondrial bioenergetics. In addition to a slight change in fat mass and a robust shift in adipocyte hypertrophy in the DEP-exposed animals, we found significant changes in adipose mitochondrial bioenergetics. Furthermore, the DEP-exposed animals had a significantly higher expression of adipose inflammatory markers compared with the adipose from RA-exposed mice. Despite the nearly exclusive focus on dietary factors in an effort to better understand metabolic health, these results highlight the novel role of environmental factors that may contribute to the growing global burden of poor metabolic health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Benjamin T. Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
2
|
Nie B, Liu X, Lei C, Liang X, Zhang D, Zhang J. The role of lysosomes in airborne particulate matter-induced pulmonary toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170893. [PMID: 38342450 DOI: 10.1016/j.scitotenv.2024.170893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
An investigation of the potential role of lysosomes in airborne particulate matter (APM) induced health risks is essential to fully comprehend the pathogenic mechanisms of respiratory diseases. It is commonly accepted that APM-induced lung injury is caused by oxidative stress, inflammatory responses, and DNA damage. In addition, there exists abundant evidence that changes in lysosomal function are essential for cellular adaptation to a variety of particulate stimuli. This review emphasizes that disruption of the lysosomal structure/function is a key step in the cellular metabolic imbalance induced by APMs. After being ingested by cells, most particles are localized within lysosomes. Thus, lysosomes become the primary locus where APMs accumulate, and here they undergo degradation and release toxic components. Recent studies have provided incontrovertible evidence that a wide variety of APMs interfere with the normal function of lysosomes. After being stimulated by APMs, lysosome rupture leads to a loss of lysosomal acidic conditions and the inactivation of proteolytic enzymes, promoting an inflammatory response by activating the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. Moreover, APMs interfere with autophagosome production or block autophagic flux, resulting in autophagy dysfunction. Additionally, APMs disrupt the normal function of lysosomes in iron metabolism, leading to disruption on iron homeostasis. Therefore, understanding the impacts of APM exposure from the perspective of lysosomes will provide new insights into the detrimental consequences of air pollution.
Collapse
Affiliation(s)
- Bingxue Nie
- The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chengying Lei
- The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xue Liang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Daoqiang Zhang
- Weihai Central Hospital Central Laboratory, Weihai 264400, Shandong, China.
| | - Jie Zhang
- The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
3
|
Wertheim D, Coldwell B, Miyashita L, Gill I, Crust S, Giddens R, Pérez NM, Petford N, Grigg J. Confocal microscopy 3D imaging and bioreactivity of La Palma volcanic ash particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165647. [PMID: 37474071 DOI: 10.1016/j.scitotenv.2023.165647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
In September 2021 an eruption began of Cumbre Vieja, La Palma (Spain) that lasted 3 months. Previous studies have shown that volcanic ash particles can be associated with adverse effects on human health however, the reasons for this are unclear. Particle shape has been shown to contribute to cellular uptake in prostate cancer cells. Hence we aimed to study 3D structure, elemental composition and effects on cultured lung cells of particles collected from the La Palma volcanic eruption. 3D imaging of PM10 sized and below particles was performed using a LEXT OLS4100 confocal microscope (Olympus Corporation, Japan). A Zeiss EVO 50 (Carl Zeiss AG, Germany) Scanning Electron Microscope (SEM) was used to assess elemental composition. In addition, volcanic particle concentration dose response for pneumococcal adhesion to A549 human alveolar epithelial cells was investigated. Confocal microscopy showed that some PM10 and below sized particles had sharp or angular 3D appearance. SEM x-ray analysis indicated silicate particles with calcium, aluminium and iron. We observed increased colony forming units indicating increased Pneumococcal adhesion due to exposure of cells to volcanic particles. Thus in addition to the toxic nature of some volcanic particles, we suggest that the observed sharp surface particle features may help to explain adverse health effects associated with volcanic eruptions.
Collapse
Affiliation(s)
- David Wertheim
- Faculty of Engineering, Computing and the Environment, Kingston University, Surrey KT1 2EE, UK.
| | - Beverley Coldwell
- Instituto Tecnológico y de Energías Renovables, Granadilla de Abona 38600, Canary Islands, Spain; Instituto Volcanológico de Canarias (INVOLCAN), Tenerife, Canary Islands, Spain
| | - Lisa Miyashita
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London E1 2AT, London, UK
| | - Ian Gill
- Faculty of Engineering, Computing and the Environment, Kingston University, Surrey KT1 2EE, UK
| | - Simon Crust
- Faculty of Engineering, Computing and the Environment, Kingston University, Surrey KT1 2EE, UK
| | - Richard Giddens
- Faculty of Engineering, Computing and the Environment, Kingston University, Surrey KT1 2EE, UK
| | - Nemesio M Pérez
- Instituto Volcanológico de Canarias (INVOLCAN), Tenerife, Canary Islands, Spain
| | - Nick Petford
- Department of Earth Sciences, Durham University, DH1 3LE, UK
| | - Jonathan Grigg
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London E1 2AT, London, UK
| |
Collapse
|
4
|
Li T, Yang HL, Xu LT, Zhou YT, Min YJ, Yan SC, Zhang YH, Wang XM. Comprehensive treatment strategy for diesel truck exhaust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54324-54332. [PMID: 36940033 DOI: 10.1007/s11356-023-26506-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
At present, diesel vehicles still play an irreplaceable role in the traditional energy field in China. Diesel vehicle exhaust contains hydrocarbons, carbon monoxide, nitrogen oxides, and particulate matter, which can lead to haze weather, photochemical smog, and the greenhouse effect; endanger human health; and damage the ecological environment. In 2020, the number of motor vehicles in China reached 372 million, and the number of automobiles reached 281 million, of which 20.92 million are diesel vehicles, accounting for only 5.6% of the number of motor vehicles and 7.4% of the number of automobiles. Nevertheless, diesel vehicles emitted 88.8% of nitrogen oxides and 99% of particulate matter in total vehicle emissions. Diesel vehicles, especially diesel trucks, have become the top priority of motor vehicle pollution control. However, there are few reviews on the comprehensive treatment of diesel vehicle exhaust. This review provides an overview of exhaust gas composition, hazards, and treatment techniques. Phytoremediation, three-way catalytic conversion, rare earth catalytic degradation, and nanoscale TiO2 catalytic degradation are briefly described.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hai-Li Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Le-Tian Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yu-Ting Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yong-Jun Min
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shi-Cheng Yan
- Ecomaterials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yong-Hui Zhang
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
5
|
Ye S, Zhang D, Chen B, Xu J, Jia C, Mei D, Yuan Y. Study on microstructure and extinction characteristics of particulate matter in diesel engine fueled with different biodiesels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22458-22470. [PMID: 36289128 PMCID: PMC9607716 DOI: 10.1007/s11356-022-23747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Biodiesel combustion particulate matter (PM) is different from diesel combustion PM in terms of microscopic morphology, which directly affects the optical properties of PM. To investigate the effect of the microstructure of biodiesel PM on the extinction characteristics, an experiment was performed on a high-pressure common rail diesel engine to collect PM from three kinds of biodiesel (the main raw materials were soybean oil methyl eater (SME), palm oil methyl eater (PME), and waste cooking oil methyl eater (WME), respectively). The particle size distribution, micro morphology, and extinction characteristics of biodiesel PM were analyzed. Results show that combustion biodiesel reduces PM emissions by up to 84.2%. Compared to PM from diesel, biodiesel PM has a smaller particle size and a higher aggregation degree, which results in weaker light absorption capacity. With the iodine number of biodiesel decreasing, the number concentration of biodiesel PM decreases and the fractal dimension increases, which leads to producing a more complex agglomerate and a consequent reduction in extinction coefficient. The average particle sizes of PM from SME, PME, and WME are 5.1%, 6.7%, and 13.9% lower than that of diesel PM. Compared with diesel combustion PM, the peak absorption coefficients of SME, WME, and PME combustion PM decrease by 8.4%, 11.4%, and 13.3%, respectively. The extinction properties of particles decrease with increasing fractal dimension within the wavelength range of visible light.
Collapse
Affiliation(s)
- Siqi Ye
- School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Dengpan Zhang
- School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Bo Chen
- School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jieping Xu
- School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Changkai Jia
- School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- CIMC Offshore Engineering Institute Co., Ltd, Yantai, 264000, People's Republic of China
| | - Deqing Mei
- School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yinnan Yuan
- School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- College of Energy, Soochow University, Suzhou, 215006, People's Republic of China
| |
Collapse
|
6
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|