1
|
Ebeed BW, Abdelmawgood IA, Kotb MA, Mahana NA, Mohamed AS, Ramadan MA, Badr AM, Nasr M, Qurani OM, Hamdy RM, El-Hakiem NYA, Fahim MK, Fekry MM, Eid JI. β-glucan nanoparticles alleviate acute asthma by suppressing ferroptosis and DNA damage in mice. Apoptosis 2025; 30:35-54. [PMID: 39305381 PMCID: PMC11799111 DOI: 10.1007/s10495-024-02013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 02/06/2025]
Abstract
Asthma is a severe respiratory disease marked by airway inflammation, remodeling, and oxidative stress. β-Glucan (BG), a polysaccharide constituent of fungal cellular structures, exhibits potent immunomodulatory activities. The investigational focus was on the anti-asthmatic and anti-ferroptotic properties of beta-glucan nanoparticles (BG-NPs) in a murine model of allergic asthma induced by ovalbumin (OVA). BG was extracted from Chaga mushrooms (Inonotus obliquus), and its BG-NPs were characterized utilizing techniques including FT-IR, UV visible spectroscopy, zeta potential analysis, DLS, XRD, and TEM. The Balb/C mice were allocated into five groups: control, untreated asthmatic, dexamethasone (Dexa)-treated (1 mg/kg), BG-treated (100 mg/kg), BG-NPs-treated (45 mg/kg), and BG-treated (100 mg/kg). Treatment with BG-NPs markedly diminished the entry of inflammatory cells into the respiratory passage, serum IgE concentrations, DNA damage, and markers of oxidative stress through the reduction of malonaldehyde (MDA) levels and enhancing the levels of reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). Furthermore, BG-NPs reduced iron deposition and promoted the transcriptional activity of the GPx4 gene in pulmonary cells, attenuating ferroptosis. The results demonstrated that BG-NPs reduced asthma by inhibiting oxidative stress, inflammation, DNA damage, and ferroptosis. Our results suggest that BG-NPs could be used as potential treatments for allergic asthma.
Collapse
Affiliation(s)
- Bassam W Ebeed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Mohamed A Kotb
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Noha A Mahana
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ayman Saber Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Marwa A Ramadan
- Department of Laser Application in Metrology Photochemistry and Agriculture, National Institute of Laser Enhanced Science NILES Cairo University, Giza, Egypt
| | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Manar Nasr
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Osama Mohsen Qurani
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Reem Mohamed Hamdy
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Mariam Khaled Fahim
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mariam Morris Fekry
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October, Egypt
| | - Jehane I Eid
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
2
|
Oczkowski M, Dziendzikowska K, Pasternak-Winiarska A, Jarmołowicz K, Gromadzka-Ostrowska J. Oat Beta-Glucan Dietary Intervention on Antioxidant Defense Parameters, Inflammatory Response and Angiotensin Signaling in the Testes of Rats with TNBS-Induced Colitis. Nutrients 2024; 16:2546. [PMID: 39125425 PMCID: PMC11314422 DOI: 10.3390/nu16152546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Male infertility represents a significant public health concern. There is a negative impact of inflammatory bowel diseases (IBDs) on the male reproductive system. The aim of this study was to investigate whether oat beta-glucan (OBG) with different molar mass can modulate parameters of antioxidant defense and inflammatory response in the testes of adult Sprague-Dawley rats with TNBS-induced colitis and whether the OBG intervention can modulate the inflammatory response in association with the RAS system. Results: higher testicular superoxide dismutase (SOD), glutathione reductase (GR) activities and glutathione (GSH) concentration, and lower testosterone (T) level and glutathione peroxidase (GPx) activity, were observed in rats with colitis than in healthy control ones. TNBS-induced colitis resulted in decreased the angiotensin 1-7 (ANG 1-7) level in the testes of rats fed with low-molar mass OBG compared to control animals. Conclusions: although colitis induced moderate pro-oxidant changes in the gonads, it seems plausible that dietary intervention with different fractions of oat beta-glucans mass may support the maintenance of reproductive homeostasis via the stimulation of the local antioxidant defense system.
Collapse
Affiliation(s)
- Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787 Warsaw, Poland; (K.D.); (A.P.-W.); (K.J.); (J.G.-O.)
| | | | | | | | | |
Collapse
|
3
|
Abdelmawgood IA, Kotb MA, Ashry H, Ebeed BW, Mahana NA, Mohamed AS, Eid JI, Ramadan MA, Rabie NS, Mohamed MY, Saed NT, Yasser N, Essam D, Zaki YY, Saeed S, Mahmoud A, Eladawy MM, Badr AM. β-glucan mitigates ovalbumin-induced airway inflammation by preventing oxidative stress and CD8 + T cell infiltration. Int Immunopharmacol 2024; 132:111985. [PMID: 38603862 DOI: 10.1016/j.intimp.2024.111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Bronchial asthma is a severe respiratory condition characterized by airway inflammation, remodeling, and oxidative stress. β-Glucan (BG) is a polysaccharide found in fungal cell walls with powerful immunomodulatory properties. This study examined and clarified the mechanisms behind BG's ameliorativeactivitiesin an allergic asthma animal model. METHOD BG was extracted from Chaga mushroom and characterized using FT-IR, UV-visible, zeta potential, and 1H NMR analysis. The mice were divided into five groups, including control, untreated asthmatic, dexamethasone (Dexa)-treated (1 mg/kg), and BG (30 and 100 mg/kg)-treated groups. RESULTS BG treatment reduced nasal scratching behavior, airway-infiltrating inflammatory cells, and serum levels of IgE significantly. Additionally, BG attenuated oxidative stress biomarkers by lowering malonaldehyde (MDA) concentrations and increasing the levels of reduced glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT). Immunohistochemical and flow cytometric analyses have confirmed the suppressive effect of BG on the percentage of airway-infiltrating cytotoxic CD8+ T cells. CONCLUSION The findings revealed the role of CD8+ T cells in the pathogenesis of asthma and the role of BG as a potential therapeutic agent for asthma management through the suppression of airway inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Mohamed A Kotb
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Hamid Ashry
- Biochemistry Branch, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Bassam W Ebeed
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Noha A Mahana
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Jehane I Eid
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Marwa A Ramadan
- Department of Laser Application in Metrology, Photochemistry, and Agriculture National Institute of Laser-Enhanced Science (NILES), Cairo University, Giza, Egypt
| | - Nahla S Rabie
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Mariam Y Mohamed
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Nermeen Th Saed
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Nada Yasser
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Dina Essam
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Youssef Y Zaki
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Samar Saeed
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Asmaa Mahmoud
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Marwan M Eladawy
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
4
|
Caetano ELA, Frattes CDC, Segato TCM, Leite FG, Pickler TB, de Oliveira Junior JM, Jozala AF, Grotto D. Protective effect of Agaricus bisporus mushroom against maternal and fetal damage induced by lead administration during pregnancy in rats. Birth Defects Res 2023; 115:1424-1437. [PMID: 37421350 DOI: 10.1002/bdr2.2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Lead (Pb) is a toxic pollutant, which can affect different tissues of the human body. The use of natural elements, as medicinal mushroom can reduce the toxic effects of Pb. OBJECTIVE We evaluated, through preclinical tests, the oral co exposures to mushroom Agaricus bisporus (Ab) by gavage and Pb in drinking water, and the capability of Ab be a protective agent for both pregnant rats and their fetuses. METHODS Female Wistar rats were divided into four groups (n = 5/group): Group I-Control; Group II-Ab 100 mg/kg; Group III-Pb 100 mg/L; Group IV-Ab +Pb -100 mg/kg +100 mg/L. Exposure was performed until the 19th day of gestation. On the 20th day, pregnant rats were euthanized, and the outcomes evaluated were weight gain; hematological profile; biochemical markers; oxidative stress markers; reproductive capacity; and embryo fetal development. RESULTS The characterization of mushrooms reveals them to be a valuable source of nutrients. However, Pb ingestion resulted in reduced weight gain and negative impacts on hematological and biochemical parameters. Fortunately, co administration of mushrooms helped to mitigate these negative effects and promote recovery. The mushroom also showed antioxidant activity, improving parameters of oxidative stress. In addition, Ab partially recovered the damage in fetal morphology and bone parameters. CONCLUSION Our findings indicated that the co administration of Ab improved the toxicity caused by Pb, and the mushroom could be used as a natural alternative as a protective/chelator agent.
Collapse
Affiliation(s)
| | | | | | - Fernanda Gomes Leite
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Programa de Pós-Graduação em Toxicologia, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
5
|
Spoială A, Ilie CI, Dolete G, Petrișor G, Trușcă RD, Motelica L, Ficai D, Ficai A, Oprea OC, Dițu ML. The Development of Alginate/Ag NPs/Caffeic Acid Composite Membranes as Adsorbents for Water Purification. MEMBRANES 2023; 13:591. [PMID: 37367795 DOI: 10.3390/membranes13060591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Since the water pollution problem still affects the environmental system and human health, the need to develop innovative membranes has become imperious. Lately, researchers have focused on developing novel materials to help diminish the contamination problem. The aim of present research was to obtain innovative adsorbent composite membranes based on a biodegradable polymer, alginate, to remove toxic pollutants. Of all pollutants, lead was chosen due to its high toxicity. The composite membranes were successfully obtained through a direct casting method. The silver nanoparticles (Ag NPs) and caffeic acid (CA) from the composite membranes were kept at low concentrations, which proved enough to bestow antimicrobial activity to the alginate membrane. The obtained composite membranes were characterised by Fourier transform infrared spectroscopy and microscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TG-DSC). Swelling behaviour, lead ion (Pb2+) removal capacity, regeneration and reusability were also determined. Further, the antimicrobial activity was tested against selected pathogenic strains (S. aureus, E. faecalis sp., P. aeruginosa, E. coli and C. albicans). The presence of Ag NPs and CA improves the antimicrobial activity of the newly developed membranes. Overall, the composite membranes are suitable for complex water treatment (removal of heavy metal ions and antimicrobial treatment).
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Gabriela Petrișor
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Roxana-Doina Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Mara-Lia Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
6
|
Pb 2+-imprinted thermosensitive antibacterial adsorbent derived from sodium alginate and PNIPAM for Pb 2+ recovery. Int J Biol Macromol 2023; 225:207-218. [PMID: 36346257 DOI: 10.1016/j.ijbiomac.2022.10.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Two sodium alginate-based Pb2+-imprinted thermosensitive hydrogels (SPIT (without ɛ-PL) and SPPIT (with ɛ-PL)) were synthesized, with sodium alginate and ɛ-polylysine (ɛ-PL) as the matrix, N-isopropylacrylamide as the monomer. Characterization with differential scanning calorimeter, Fourier transform infrared spectroscopy, thermogravimetric analyzer, scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy confirmed the aimed structure of the hydrogels. The adsorption capacity of SPIT and SPPIT for Pb2+ was 98.64 mg/g and 153.49 mg/g, respectively. Washing the Pb2+-loaded adsorbent with 10 °C deionized water, SPIT and SPPIT achieved a desorption efficiency of 94.59 % and 97.51 %, respectively. After 10 cycles of adsorption-desorption process, the adsorption capacity and desorption efficiency remained at about 80-88 % of the original ones, expressing excellent reusability. In a mixture containing eight metal ions (Pb2+, Cu2+, Mg2+, Ca2+, Cd2+, Na+, K+, Fe3+), the adsorption capacity of SPIT to Pb2+ was 92.49 mg/g, and that of SPPIT was 102.49 mg/g, much higher than that to the other ions (1.50-11.38 mg/g on SPIT, 9.48-27.45 mg/g on SPPIT), showing excellent adsorption selectivity. The introduction of ɛ-PL enhanced the adsorption capacity, antibacterial ability and stability of the hydrogel, ensuring better application potential in real wastewater.
Collapse
|
7
|
Ma X, Dong L, He Y, Chen S. Effects of ultrasound-assisted H 2O 2 on the solubilization and antioxidant activity of yeast β-glucan. ULTRASONICS SONOCHEMISTRY 2022; 90:106210. [PMID: 36327922 PMCID: PMC9619374 DOI: 10.1016/j.ultsonch.2022.106210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Yeast β-glucan (YG) possess an extensive range of biological activities, such as the inhibition of oxidation, but the poor water solubility of macromolecular YG limits its application. In this study, through the combined degradation of ultrasonic waves and H2O2, and the optimization of the main process parameters for solubilizing YG by response surface methodology (RSM), a new product of YGUH was generated. The molecular weight, structural characteristics and degradation kinetics before and after solubilization were evaluated. The results showed that the optimal solubilization conditions were reaction time: 4 h, ultrasonic power: 3 W/mL, H2O2 concentration: 24 %. Under these conditions, ultrasound-assisted H2O2 increased the solubility (from 13.60 % to 70.00 %) and reduced molecular weight (from 6.73 × 106 Da to 1.22 × 106 Da). Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), Congo red (CR), scanning electron microscopy (SEM) revealed that ultrasound-assisted H2O2 increased the conformation's flexibility greatly, without changing the main structure of YG. More importantly, solubilization of YG improved free radical scavenging activity with YGUH exhibiting the highest levels of DPPH and ABTS+ free radical scavenging activity. These results revealed that ultrasound-assisted H2O2 degradation could be a suitable way to increase the solubility of YG for producing value-added YG.
Collapse
Affiliation(s)
- Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| | - Lin Dong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| | - Yan He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| | - Shiwen Chen
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| |
Collapse
|