1
|
Zeng Z, Liu J, Yuan Z, Dong Y, Zhao W, Yuan S, Xie S, Jing M, Wu T, Ge P. Designing Sphere-like FeSe 2-Carbon Composites with Rational Construction of Interfacial Traits towards Considerable Sodium-storage Capabilities. J Colloid Interface Sci 2023; 648:149-160. [PMID: 37301140 DOI: 10.1016/j.jcis.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Due to their low cost and high stability, sodium-ion batteries have been increasingly studied. However, their further development is limited by the relative energy density, resulting in the search for high-capacity anodes. FeSe2 displays high conductivity and capacity but still suffers from sluggish kinetics and serious volume expansion. Herein, through sacrificial template methods, a series of sphere-like FeSe2-carbon composites are successfully prepared, displaying uniform carbon coatings and interfacial chemical FeOC bonds. Moreover, benefiting from the unique traits of precursor and acid treatment, rich structural voids are prepared, effectively alleviating volume expansion. Utilized as anodes of sodium-ion batteries, the optimized sample displays considerable capacity, achieving 462.9 mAh g-1, with 88.75% coulombic efficiency at 1.0 A g-1. Even at 5.0 A g-1, their capacity can be kept at approximately 318.8 mAh g-1, while the stable cycling can be prolonged to 200 cycles above. Supported by the detailed kinetic analysis, it can be noted that the existing chemical bonds facilitate the fast shuttling of ions at the interface, and the enhanced surface/near-surface properties are further vitrified. Given this, the work is expected to offer valuable insights for the rational design of metal-based samples toward advanced sodium-storage materials.
Collapse
Affiliation(s)
- Zihao Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Junchang Liu
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zhengqiao Yuan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yu Dong
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wenqing Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Shaohui Yuan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Siyan Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Mingjun Jing
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Tianjing Wu
- National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Peng Ge
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Khan M, Soylak M. Ti3AlC2 Max Phase- Graphene oxide (GO) Nanocomposite for Selective Solid Phase Microextraction of Palladium in Environmental Samples and Medical Appliances Prior to Its Detection with High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS-FAAS). Microchem J 2022. [DOI: 10.1016/j.microc.2022.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Duarte IJM, Lima TMIDO, França AMDM, Buarque HLDB, do Nascimento RF. Adsorption of caffeine using steel wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79977-79994. [PMID: 35290582 DOI: 10.1007/s11356-022-19582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Caffeine is the most widespread active pharmaceutical compound in the world, generally studied as a tracer of human pollution, since caffeine levels in surface water correlate with the anthropogenic load of domestic wastewater. This work investigated the use of different steel wastes named as SW-I, SW-II, SW-II, SW-IV, SW-V, and SW-VI in the adsorption of caffeine. These materials were pretreated and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and point of zero charge. The samples are mainly composed of iron (hematite and magnetite). The caffeine adsorption test indicated that SW-VI (steel slag dust) is the most efficient and promising (removal around 51.68%) in relation to the other residues, which it was selected for further studies. Equilibrium time was reached within 96 h of contact between the adsorbent and the adsorbate, with removal of 84.00%, 81.09%, and 73.19% for the initial concentrations of 10 mg L-1, 20 mg L-1, and 30 mg L-1 of caffeine. The pseudo-first-order, pseudo-second-order, and Elovich models presented a good fit to the experimental data. However, the pseudo-first order model described better the experimental behavior. Adsorption isotherms were performed at three temperatures (298, 308, and 318 K). The maximum adsorption capacity was 17.46 ± 2.27 mg g-1, and experimental data were better fitted by the Sips isotherm. Values of ΔG° and parameters equilibrium of the models of Langmuir, Sips, and Temkin were calculated from the standard enthalpies and standard entropies estimated. The values of ΔG° were negative for the temperatures studied indicating that the adsorption process is viable and spontaneous. Negative values for ΔH° were also found, indicating that the process of caffeine adsorption by SW-VI is an exothermic process (0 to -40 kJ mol-1). Thus, the adsorption of caffeine by SW-VI is a physical process. The SW-VI material showed economic viability and promising for the adsorption of caffeine in aqueous media.
Collapse
Affiliation(s)
- Iara Jennifer Moura Duarte
- Universidade Federal do Ceará, Campus do Pici, R. Cinco, 100 - Pres. Kennedy, Fortaleza, CE, 60355-636, Brazil.
| | | | | | | | | |
Collapse
|
4
|
Shi Y, Wang H, Song G, Zhang Y, Tong L, Sun Y, Ding G. Magnetic graphene oxide for methylene blue removal: adsorption performance and comparison of regeneration methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30774-30789. [PMID: 34993777 DOI: 10.1007/s11356-021-17654-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
A series of Fe3O4-graphene oxide (GO) composite materials (MGOs) with abundant surface area, rich oxygen-containing functional groups, and magnetic properties were prepared in a facile coprecipitation method and then employed for the adsorptive removal of methylene blue (MB) from water. The kinetic data were better fitted in the pseudo-second-order model than in the pseudo-first-order model, and the intraparticle diffusion model revealed the two-step diffusion process including diffusion in the boundary layer and in the porous structures. The maximum adsorption amounts of MB were calculated to be 37.5-108 mg/g at 25 °C and pH 9 using the Langmuir isotherm model. Thermodynamic study showed that the adsorption process was spontaneous, with ΔH° of 23.0-49.6 kJ/mol and ΔS° of 131-249 J∙mol-1∙K-1. The adsorption amount of MB increased with pH in the range of 4-10. Inorganic ions including Na+ and Ca2+ suppressed the adsorption of MB, and the more pronounced impact of Ca2+ was ascribed to its higher valence state. The cetyltrimethylammonium bromide (CTAB) surfactant showed a stronger inhibitory effect than Ca2+. The adsorption mechanism was proposed to be a combination of electrostatic interactions, hydrophobic adsorption, and electron donor-acceptor interactions. Two methods were used for the regeneration of spent MGO, and the results showed that the peroxomonosulfate (PMS) oxidation method was more favorable than the acid washing method, considering the better regeneration ability and lower amount of washing water used. Finally, the reaction mechanism of PMS oxidation was analyzed based on quenching tests and in situ open circuit potential measurements, which proved that OH and 1O2 played dominant roles and that the fine adsorption ability of MGO promoted the reaction between them and MB.
Collapse
Affiliation(s)
- Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Haonan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Guobin Song
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Liya Tong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|