1
|
Chatterjee N, González-Durruthy M, Costa MD, Ribeiro AR, Vilas-Boas V, Vilasboas-Campos D, Maciel P, Alfaro-Moreno E. Differential impact of diesel exhaust particles on glutamatergic and dopaminergic neurons in Caenorhabditis elegans: A neurodegenerative perspective. ENVIRONMENT INTERNATIONAL 2024; 186:108597. [PMID: 38579453 DOI: 10.1016/j.envint.2024.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
The growing body of evidence links exposure to particulate matter pollutants with an increased risk of neurodegenerative diseases. In the present study, we investigated whether diesel exhaust particles can induce neurobehavioral alterations associated with neurodegenerative effects on glutamatergic and dopaminergic neurons in Caenorhabditis elegans (C. elegans). Exposure to DEP at concentrations of 0.167 µg/cm2 and 1.67 µg/cm2 resulted in significant developmental delays and altered locomotion behaviour. These effects were accompanied by discernible alterations in the expressions of antioxidant genes sod-3 and gst-4 observed in transgenic strains. Behaviour analysis demonstrated a significant reduction in average speed (p < 0.001), altered paths, and decreased swimming activities (p < 0.01), particularly at mid and high doses. Subsequent assessment of neurodegeneration markers in glutamatergic (DA1240) and dopaminergic (BZ555) transgenic worms revealed notable glutamatergic neuron degeneration at 0.167 μg/cm2 (∼30 % moderate, ∼20 % advanced) and 1.67 μg/cm2 (∼28 % moderate, ∼24 % advanced, p < 0.0001), while dopaminergic neurons exhibited structural deformities (∼16 %) without significant degeneration in terms of blebs and breaks. Furthermore, in silico docking simulations suggest the presence of an antagonistic competitive inhibition induced by DEP in the evaluated neuro-targets, stronger for the glutamatergic transporter than for the dopaminergic receptor from the comparative binding affinity point of view. The results underscore DEP's distinctive neurodegenerative effects and suggest a link between locomotion defects and glutamatergic neurodegeneration in C. elegans, providing insights into environmental health risks assessment.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| | | | - Marta Daniela Costa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Ana R Ribeiro
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Vânia Vilas-Boas
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Ernesto Alfaro-Moreno
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| |
Collapse
|
2
|
da Silva ACG, de Mendonça ICF, Valadares MC. Characterization and applicability of a novel physiologically relevant 3D-tetraculture bronchial model for in vitro assessment of respiratory sensitization. Toxicology 2024; 503:153756. [PMID: 38369009 DOI: 10.1016/j.tox.2024.153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Chemical Respiratory Allergy (CRA) is triggered after exposure to Low Molecular Weight (LMW) sensitizers and manifests clinically as asthma and rhinitis. From a risk/toxicity assessment point of view, there are few methods, none of them validated, for evaluating the respiratory sensitization potential of chemicals once the in vivo-based models usually employed for inhalation toxicity addressment do not comprise allergenicity endpoints specifically. Based on that, we developed, characterized, and evaluated the applicability of a 3D-tetraculture airway model reconstructed with bronchial epithelial, fibroblasts, endothelial and monocytic cell lines. Moreover, we exposed the tissue to maleic anhydride (MA) aerosols to challenge the model and subsequently assessed inflammatory and functional aspects of the tissue. The reconstructed tissue presented phenotypic biomarkers compatible with human bronchial epithelium, and MA aerosol exposure triggered an increased IL-8 and IL-6 production, reactive oxygen species (ROS) formation, and apoptosis of epithelial cells. Besides, augmented IL-8 production by monocytic cells was also found, correlating with dendritic cell activation within the co-culture model after MA exposure. Our results demonstrated that the 3D-tetraculture bronchial model presents hallmarks related to human airways' structure and function. Additionally, exposure to a respiratory sensitizer induced inflammatory and functional alterations in the reconstructed tissue, rendering it a valuable tool for exploring the mechanistic framework of chemically induced respiratory sensitization.
Collapse
Affiliation(s)
- Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
3
|
Liu H, Fu G, Li W, Liu B, Ji X, Zhang S, Qiao K. Oxidative stress and mitochondrial damage induced by a novel pesticide fluopimomide in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91794-91802. [PMID: 37479935 DOI: 10.1007/s11356-023-28893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Fluopimomide is a novel pesticide intensively used in agricultural pest control; however, its excessive use may have toxicological effects on non-target organisms. In this study, Caenorhabditis elegans was used to evaluate the toxic effects of fluopimomide and its possible mechanisms. The effects of fluopimomide on the growth, pharyngeal pumping, and antioxidant systems of C. elegans were determined. Furthermore, the gene expression levels associated with mitochondria in the nematodes were also investigated. Results indicated that fluopimomide at 0.2, 1.0, and 5.0 mg/L notably (p < 0.001) decreased body length, pharyngeal pumping, and body bends in the nematodes compared to the untreated control. Additionally, fluopimomide at 0.2, 1.0, and 5.0 mg/L notably (p < 0.05) increased the content of malondialdehyde by 3.30-, 21.24-, and 33.57-fold, respectively, while fluopimomide at 1.0 and 5.0 mg/L significantly (p < 0.001) increased the levels of reactive oxygen species (ROS) by 49.14% and 77.06% compared to the untreated control. In contrast, fluopimomide at 1.0 and 5.0 mg/L notably reduced the activities of target enzyme succinate dehydrogenase and at 5.0 mg/L reduced the activities of antioxidant enzyme superoxide dismutase. Further evidence revealed that fluopimomide at 1.0 and 5.0 mg/L significantly inhibited oxygen consumption and at 0.2, 1.0, and 5.0 mg/L significantly inhibited ATP level in comparison to the untreated control. The expression of genes related to the mitochondrial electron transport chain mev-1 and isp-1 was significantly downregulated. ROS levels in the mev-1 and isp-1 mutants after fluopimomide treatments did not change significantly compared with the untreated mutants, suggesting that mev-1 and isp-1 may play critical roles in the toxicity induced by fluopimomide. Overall, the results demonstrate that oxidative stress and mitochondrial damage may be involved in toxicity of fluopimomide in C. elegans.
Collapse
Affiliation(s)
- Huimin Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guanghan Fu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wenjing Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Bingjie Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiaoxue Ji
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, Gainesville, FL, 33031, USA
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Shandong Huayang Technology Co., Ltd, Tai'an, 271411, Shandong, China.
| |
Collapse
|
4
|
Melzi G, Nozza E, Frezzini MA, Canepari S, Vecchi R, Cremonesi L, Potenza M, Marinovich M, Corsini E. Toxicological Profile of PM from Different Sources in the Bronchial Epithelial Cell Line BEAS-2B. TOXICS 2023; 11:toxics11050413. [PMID: 37235228 DOI: 10.3390/toxics11050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The toxicity of particulate matter (PM) is strictly associated with its physical-chemical characteristics, such as size or chemical composition. While these properties depend on the origin of the particles, the study of the toxicological profile of PM from single sources has rarely been highlighted. Hence, the focus of this research was to investigate the biological effects of PM from five relevant sources of atmospheric PM: diesel exhaust particles, coke dust, pellet ashes, incinerator ashes, and brake dust. Cytotoxicity, genotoxicity, oxidative, and inflammatory response were assessed in a bronchial cell line (BEAS-2B). BEAS-2B cells were exposed to different concentrations (25, 50, 100, and 150 μg/mL medium) of particles suspended in water. The exposure lasted 24 h for all the assays performed, except for reactive oxygen species, which were evaluated after 30 min, 1 h, and 4 h of treatment. The results showed a different action of the five types of PM. All the tested samples showed a genotoxic action on BEAS-2B, even in the absence of oxidative stress induction. Pellet ashes seemed to be the only ones able to induce oxidative stress by boosting the formation of reactive oxygen species, while brake dust resulted in the most cytotoxic. In conclusion, the study elucidated the differential response of bronchial cells to PM samples generated by different sources. The comparison could be a starting point for a regulatory intervention since it highlighted the toxic potential of each type of PM tested.
Collapse
Affiliation(s)
- Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Emma Nozza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
- PhD Program in Experimental Medicine, Università degli Studi di Milano, Via L. Vanvitelli 32, 20129 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via della Commenda 19, 20122 Milan, Italy
| | - Maria Agostina Frezzini
- Department of Environmental Biology, Sapienza University of Rome, Via C. De Lollis 21, 00185 Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, Via C. De Lollis 21, 00185 Rome, Italy
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Llorenç Cremonesi
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Marco Potenza
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
5
|
Smoot J, Padilla S, Farraj AK. The utility of alternative models in particulate matter air pollution toxicology. Curr Res Toxicol 2022; 3:100077. [PMID: 35676914 PMCID: PMC9168130 DOI: 10.1016/j.crtox.2022.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Countless unique particulate matter (PM) samples with limited or no toxicity information. Alternative in vivo models offer greater throughput than traditional mammalian models. Use of zebrafish, fruit flies, and nematodes in PM toxicology lacks systematic review. Their utility in PM toxicity and mechanistic research and as screening tools is reviewed.
Exposure to particulate matter (PM) air pollution increases risk of adverse human health effects. As more attention is brought to bear on the problem of PM, traditional mammalian in vivo models struggle to keep up with the risk assessment challenges posed by the countless number of unique PM samples across air sheds with limited or no toxicity information. This review examines the utility of three higher throughput, alternative, in vivo animal models in PM toxicity research: Danio rerio (zebrafish), Caenorhabditis elegans (nematode), and Drosophila melanogaster (fruit fly). These model organisms vary in basic biology, ease of handling, methods of exposure to PM, number and types of available assays, and the degree to which they mirror human biology and responsiveness, among other differences. The use of these models in PM research dates back over a decade, with assessments of the toxicity of various PM sources including traffic-related combustion emissions, wildland fire smoke, and coal fly ash. This article reviews the use of these alternative model organisms in PM toxicity studies, their biology, the various assays developed, endpoints measured, their strengths and limitations, as well as their potential role in PM toxicity assessment and mechanistic research going forward.
Collapse
Affiliation(s)
- Jacob Smoot
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Stephanie Padilla
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, United States
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC, United States
- Corresponding author.
| |
Collapse
|