1
|
Voronezhskaya V, Volkova P, Bitarishvili S, Shesterikova E, Podlutskii M, Clement G, Meyer C, Duarte GT, Kudin M, Garbaruk D, Turchin L, Kazakova E. Multi-Omics Analysis of Vicia cracca Responses to Chronic Radiation Exposure in the Chernobyl Exclusion Zone. PLANTS (BASEL, SWITZERLAND) 2023; 12:2318. [PMID: 37375943 DOI: 10.3390/plants12122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Our understanding of the long-term consequences of chronic ionising radiation for living organisms remains scarce. Modern molecular biology techniques are helpful tools for researching pollutant effects on biota. To reveal the molecular phenotype of plants growing under chronic radiation exposure, we sampled Vicia cracca L. plants in the Chernobyl exclusion zone and areas with normal radiation backgrounds. We performed a detailed analysis of soil and gene expression patterns and conducted coordinated multi-omics analyses of plant samples, including transcriptomics, proteomics, and metabolomics. Plants growing under chronic radiation exposure showed complex and multidirectional biological effects, including significant alterations in the metabolism and gene expression patterns of irradiated plants. We revealed profound changes in carbon metabolism, nitrogen reallocation, and photosynthesis. These plants showed signs of DNA damage, redox imbalance, and stress responses. The upregulation of histones, chaperones, peroxidases, and secondary metabolism was noted.
Collapse
Affiliation(s)
| | | | | | | | | | - Gilles Clement
- Institute Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Christian Meyer
- Institute Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | | | - Maksim Kudin
- Polesye State Radiation-Ecological Reserve, 247618 Khoiniki, Belarus
| | - Dmitrii Garbaruk
- Polesye State Radiation-Ecological Reserve, 247618 Khoiniki, Belarus
| | - Larisa Turchin
- Polesye State Radiation-Ecological Reserve, 247618 Khoiniki, Belarus
| | | |
Collapse
|
2
|
Wang Y, Feng H, Wang R, Zhou L, Li N, He Y, Yang X, Lai J, Chen K, Zhu W. Non-targeted metabolomics and 16s rDNA reveal the impact of uranium stress on rhizosphere and non-rhizosphere soil of ryegrass. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 258:107090. [PMID: 36565664 DOI: 10.1016/j.jenvrad.2022.107090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
As a radioactive heavy metal element with a long half-life, uranium causes environmental pollution when it enters the surrounding soil. This study analyzed the changes about soil enzyme activity, non-targeted metabolomics, microbial community structure and function microbial community structure and function to assess the differences in the effects of uranium stress on rhizosphere and non-rhizosphere soil. Results showed that uranium stress significantly inhibited the activities of urease and sucrase in rhizosphere and non-rhizosphere, which had less effect on rhizosphere. Compare to the non-rhizosphere soil, the uranium stress induced the production of gibberellin A1, to promoted several metabolic pathways, such as nitrogen and PTS (Phosphotransferase system) metabolic in rhizosphere soil. The species and abundance of Aspergillus, Acidobacter, and Synechococcus in both rhizosphere and non-rhizosphere soil were decreased by uranium stress. However, the microorganisms in rhizosphere soil were less inhibited according to the soil metabolism and microbial network map analysis. Furthermore, the Chujaibacter in rhizosphere soil under uranium stress was found significantly positively correlated with lipid and organic oxygen compounds. Overall, the results indicated that ryegrass roots significantly alleviated the effects of uranium stress on soil microbial activity and population abundances, thus playing a protective role. The study also provided a theoretical basis for in-depth understanding of the biological effects, prevention and control mechanisms of uranium-contaminated soil.
Collapse
Affiliation(s)
- Yilin Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Huachuan Feng
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ruixiang Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Li Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Nan Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yizhou He
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jinlong Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
3
|
Lyu P, Li L, Huang X, Xie J, Ye J, Tian Y, Huang J, Zhu C. Ternary Ca-Mg-Al layered double-hydroxides for synergistic remediation of As, Cd, and Pb from both contaminated soil and groundwater: Characteristics, effectiveness, and immobilization mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130030. [PMID: 36170797 DOI: 10.1016/j.jhazmat.2022.130030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/02/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Layered double hydroxides (LDH) are the cost-effective and high-efficiency materials for remediation of potentially toxic elements (PTEs) in contaminated soil and groundwater. Herein, the effectiveness and mechanisms of a ternary Ca-Mg-Al LDH (CMAL) for the synergistic remediation of As, Cd, and Pb were investigated in contaminated soils and simulative groundwaters for the first time. The immobilization efficiencies of As, Cd, and Pb in both black soil (BS) and red soil (RS) amended by CMAL at 5 wt% were all > 75%. CMAL amendment transferred more mobile As, Cd, and Pb fractions in soils to immobile species than did Ca-Al LDH and Mg-Al LDH treatments. Furthermore, using a pump-and-treat technology, 82-98% of these 3 PTEs from contaminated groundwater were successfully immobilized in both CMAL treated BS and RS top-soils. Meanwhile, leaching of Ca, Mg, and Al from CMAL was minimal indicating the material was stable. The excellent immobilization performance of CMAL for these PTEs was attributed to the coating of soil microparticles by CMAL nanosheets that allowed complexation of Ca-O-As/Cd or Mg-O-As/Cd/Pb formation, co-precipitation of Ca/Fe-As and Cd(OH)2, and formation of Ca-bridged ternary complex (FeO-Ca-As/Cd). The adverse effect of oppositive pH/Eh-dependence between As and Cd/Pb was overshadowed by these mechanisms and thus allowed As immobilization. Immobilization of As, Cd, and Pb by CMAL amendment was more favorable for RS soil due to its lower reduction potential and more participation of metal-(hydr)oxides for complexation. Overall, the ternary-LDH is a promising synergistic remediation strategy for multi-PTEs contaminated soil and groundwater.
Collapse
Affiliation(s)
- Peng Lyu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lianfang Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaoya Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinni Xie
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Ye
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunlong Tian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinli Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Chelating Agents in Assisting Phytoremediation of Uranium-Contaminated Soils: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14106379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Massive stockpiles of uranium (U) mine tailings have resulted in soil contamination with U. Plants for soil remediation have low extraction efficiency of U. Chelating agents can mobilize U in soils and, hence, enhance phytoextraction of U from the soil. However, the rapid mobilization rate of soil U by chelating agents in a short period than plant uptake rate could increase the risk of groundwater contamination with soluble U leaching down the soil profile. This review summarizes recent progresses in synthesis and application of chelating agents for assisting phytoremediation of U-contaminated soils. In detail, the interactions between chelating agents and U ions are initially elucidated. Subsequently, the mechanisms of phytoextraction and effectiveness of different chelating agents for phytoremediation of U-contaminated soils are given. Moreover, the potential risks associated with chelating agents are discussed. Finally, the synthesis and application of slow-release chelating agents for slowing down metal mobilization in soils are presented. The application of slow-release chelating agents for enhancing phytoextraction of soil U is still scarce. Hence, we propose the preparation of slow-release biodegradable chelating agents, which can control the release speed of chelating agent into the soil in order to match the mobilization rate of soil U with plant uptake rate, while diminishing the risk of residual chelating agent leaching to groundwater.
Collapse
|