1
|
Mercy FT, Alam AKMR. Assessment of microplastic contamination in shrimps from the Bay of Bengal and associated human health risk. MARINE POLLUTION BULLETIN 2024; 201:116185. [PMID: 38412798 DOI: 10.1016/j.marpolbul.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Microplastics (MPs) were analyzed in seven shrimp species Tiger shrimp (Penaeus monodon), Red tiger shrimp (Caridina cantonensis), Indian shrimp (Penaeus indicus), Red shrimp (Metapenaeus dobsoni), White shrimp (Penaeus merguiensis), Brown shrimp (Metapenaeus monoceros), and Roshna shrimp (Palaemon styliferus) collected from the Bay of Bengal. The abundance and characteristics of MPs were assessed in the gastrointestinal tract (GIT), which certainly translocated to the muscle of shrimp species. The highest MP abundance was found in C. cantonensis with 7.2 items/individual (25.3 items/g in the GIT and 6.3 items/g in muscle). The prominent types of MPs in shrimp samples were fibers (30 %) and fragments (29 %). The ingestion rate of MPs of black and transparent color was comparatively higher, with 64 % of the ingested MPs were < 100 μm. The primary polymer types detected based on Fourier Transform Infrared (FTIR) analysis were Low-Density Polyethylene (LDPE), High-Density Polyethylene (HDPE), Polymethyl Methacrylate (PMMA), Polyvinyl Chloride (PVC), Polypropylene (PP), and Ethylene Vinyl Acetate (EVA). Results from Scanning Electron Microscopy (SEM) showed rough surface textures and adhered particles on the MPs isolated from shrimps. The margin of exposure for females was 71.42, and for males, it was 80.64, indicating that women in Bangladesh are more likely to be exposed to MPs and face a higher risk than men. Sensitivity analysis revealed that MPs particle size was the most sensitive parameter. These findings provide a comprehensive understanding of MP ingestion, human exposure, and contamination in shrimps of Bangladesh, which can help future monitoring efforts.
Collapse
Affiliation(s)
- Fariha Tahsin Mercy
- Department of Environmental Science, Bangladesh University of Professionals, Mirpur, Dhaka 1216, Bangladesh
| | - A K M Rashidul Alam
- Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
| |
Collapse
|
2
|
Liang J, Abdullah ALB, Wang H, Liu G, Han M. Change in energy-consuming strategy, nucleolar metabolism and physical defense in Macrobrachium rosenbergii after acute and chronic polystyrene nanoparticles exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106711. [PMID: 37783050 DOI: 10.1016/j.aquatox.2023.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
The COVID-19 pandemic has further intensified plastic pollution due to the escalated use of single-use gloves and masks, consequently leading to the widespread presence of microplastics (MPs) and nanoplastics (NPs) in major rivers and lakes worldwide. Macrobrachium rosenbergii has become an important experimental subject due to its ecological role and environmental sensitivity. In this study, we sought to comprehend the ramifications of NPs on the widely-distributed freshwater prawn, M rosenbergii, by conducting a detailed analysis of its responses to NPs after both 96 h and 30 days of exposure. The transcriptome analysis revealed 918 differentially expressed unigenes (DEGs) after 30 days of NPs exposure (356 upregulated, 562 downregulated) and 2376 DEGs after 96 h of NPs exposure (1541 upregulated, 835 downregulated). The results of DEGs expression indicated that acute NPs exposure enhanced carbohydrate transport and metabolism, fostering chitin and extracellular matrix processes. In contrast, chronic NPs exposure induced nucleolar stress in M. rosenbergii, impeding ribosome development and mRNA maturation while showing no significant changes in glucose metabolism. Our findings underscore the M. rosenbergii distinct coping mechanisms during acute and chronic NPs exposure, elucidating its vital adaptive strategies. These results contribute to our understanding of the ecological implications of NPs pollution and its impact on aquatic animals.
Collapse
Affiliation(s)
- Ji Liang
- School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | | | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Mingming Han
- Centre for marine and coastal studies, University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
3
|
Nantege D, Odong R, Auta HS, Keke UN, Ndatimana G, Assie AF, Arimoro FO. Microplastic pollution in riverine ecosystems: threats posed on macroinvertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27839-9. [PMID: 37248351 DOI: 10.1007/s11356-023-27839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Microplastics (MPs) are pollutants of emerging concern that have been reported in terrestrial and aquatic ecosystems as well as in food items. The increasing production and use of plastic materials have led to a rise in MP pollution in aquatic ecosystems. This review aimed at providing an overview of the abundance and distribution of MPs in riverine ecosystems and the potential effects posed on macroinvertebrates. Microplastics in riverine ecosystems are reported in all regions, with less research in Africa, South America, and Oceania. The abundance and distribution of MPs in riverine ecosystems are mainly affected by population density, economic activities, seasons, and hydraulic regimes. Ingestion of MPs has also been reported in riverine macroinvertebrates and has been incorporated in caddisflies cases. Further, bivalves and chironomids have been reported as potential indicators of MPs in aquatic ecosystems due to their ability to ingest MPs relative to environmental concentration. Fiber and fragments are the most common types reported. Meanwhile, polyethylene, polypropylene, polystyrene, polyethylene terephthalate (polyester), polyamide, and polyvinyl chloride are the most common polymers. These MPs are from materials/polymers commonly used for packaging, shopping/carrier bags, fabrics/textiles, and construction. Ingestion of MPs by macroinvertebrates can physically harm and inhibit growth, reproduction, feeding, and moulting, thus threatening their survival. In addition, MP ingestion can trigger enzymatic changes and cause oxidative stress in the organisms. There is a need to regulate the production and use of plastic materials, as well as disposal of the wastes to reduce MP pollution in riverine ecosystems.
Collapse
Affiliation(s)
- Diana Nantege
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria.
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Robinson Odong
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Helen Shnada Auta
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Unique Ndubuisi Keke
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Gilbert Ndatimana
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Attobla Fulbert Assie
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Francis Ofurum Arimoro
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| |
Collapse
|
4
|
Sučik M, Valenčáková A. Comparison of Chemical and Biological Methods of Filtering Cryptosporidia from Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12675. [PMID: 36231975 PMCID: PMC9566534 DOI: 10.3390/ijerph191912675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Despite the fact that Cryptosporidium spp. is a parasite which commonly causes diarrhea, it still receives little attention. In our experiment, we focused on comparing the biological (N. davidi shrimp) and physical (zeolite with different thicknesses) possibility of filtering cryptosporidia from a small volume of water, which could contribute to increasing the catchability of this parasite. We monitored the ability to capture oocysts of the parasite Cryptosporidium parvum, genotype IIaA11G2R1, found in water samples. We infected drinking water with feces with a known number of cryptosporidial oocysts. One gram of sample contained ±28 oocysts. We filtered eight water samples with different concentrations of oocysts (0.1-2 g of infected stool per 15 L of water) using zeolite with a particle thickness of 0.2-0.6 mm and 0-0.3 mm. This was followed by purification, centrifugation and isolation utilizing the isolation kit AmpliSens® DNA-sorb-B, which is intended for stool. In total, 120 shrimp were divided into four aquariums (A, B, C, n = 30) including the control (K), while drinking water with the same parameters was infected with different concentrations of oocysts (A: 2.5 g, B: 2 g, C: 1 g of infected stool per 15 L of water). We took 10 individual shrimp and processed them in three time intervals (6 h, 12 h and 24 h). We processed them whole, and we isolated the DNA utilizing the isolation kit AmpliSens® DNA-sorb-AM, which is intended for tissues. Detection was carried out by molecular methods, namely the Nested PCR targeting of the region of the GP60 gene (60 kD glycoprotein). Gel electrophoresis showed the presence of C. parvum in seven zeolite-filtered water samples, and the parasite was not found in the water sample with the lowest number of oocysts filtered through the smaller-particle zeolite. There were 67 C. parvum-positive shrimp. Whereas the most positive shrimp were identified at 12 h of sampling, the least were identified at the 24 h mark. No shrimp positive for C. parvum was found in the control group. By sequencing, we confirmed the presence of C. parvum, genotype IIaA11G2R1, in all positive samples. We thus proved that the filtration capabilities of zeolite and N. davidi can be used for the rapid diagnosis of the presence of protozoa in a small amount of studied water.
Collapse
|
5
|
Pisani XG, Lompré JS, Pires A, Greco LL. Plastics in scene: A review of the effect of plastics in aquatic crustaceans. ENVIRONMENTAL RESEARCH 2022; 212:113484. [PMID: 35644492 DOI: 10.1016/j.envres.2022.113484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution in aquatic environments is present in all compartments from surface water to benthic sediment, becoming a topic of emerging concern due to the internalization, retention time, and its effects on aquatic biota. Crustacea with nearly 70,000 species, broad distribution and different roles in the trophic webs is a significant target of the increasing plastic pollution. At least 98 publications in the last 10 years report the impact of plastics in crustaceans, all suggesting that this taxon is at high risk for ecosystem disadvantage by plastic contamination loads. This review compiles the current knowledge on physiological effects (endpoints) by plastic contamination analyzed in crustaceans in the last 10 years, highlighting their use as model species for ecotoxicological tests, sentinels species and bioindicators. Plastic contamination analyzed in this review includes macroplastic, microplastic, and nanoplastic, in a wide variety of types. The studies were focused on 38 marine species with an economic interest in fisheries and aquaculture; 14 freshwater with a higher frequency in standard test species and 4 estuarial and 3 mangrove species with ecological interest. The publications reviewed were divided into studies describing plastic presence in crustaceans without reporting toxic effects and those with analysis of plastic toxicity. Publications describing the plastic presence in the organisms show that the ingestion in individual effects and food-web transfer in ecological effects were the most frequent endpoints. The publications that analyzed plastic toxicity through survival, nutrition-metabolism-assimilation, and reproduction in individual effects, and bioaccumulation in ecological effects were the most frequent endpoints. This review gathers the available information on the use of crustaceans as model species in environmental impact for toxicity screening and hazard assessment. Besides, identifying knowledge gaps will let us propose some future directions in research and the effects on target fisheries species which involves a possible effect on human health.
Collapse
Affiliation(s)
- Ximena González Pisani
- Centro para El Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CESIMAR-CONICET), Puerto Madryn, Argentina; Instituto Patagónico Del Mar, Facultad de Ciencias Naturales y de La Salud, Universidad Nacional de La Patagonia "San Juan Bosco" (IPaM-UNPSJB), Puerto Madryn, Argentina.
| | - Julieta Sturla Lompré
- Centro para El Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CESIMAR-CONICET), Puerto Madryn, Argentina
| | - Adilia Pires
- Center for Environmental and Marine Studies (CESAM) & Departament of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Laura López Greco
- Universidad de Buenos Aires-CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de La Reproducción, Crecimiento y Nutrición de Crustáceos Decápodos, Buenos Aires, Argentina
| |
Collapse
|
6
|
D'Costa AH. Microplastics in decapod crustaceans: Accumulation, toxicity and impacts, a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154963. [PMID: 35367539 DOI: 10.1016/j.scitotenv.2022.154963] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The presence of microplastics in the aquatic environment poses a serious threat not only to aquatic organisms but also to human beings that consume them. The uptake and effects of microplastics have been studied in almost all groups of aquatic organisms. This review details the different aspects of microplastics exposure in an ecologically and economically important group of crustaceans, the Decapods. A majority of Decapod crustaceans such as prawns, shrimp, crabs, lobsters and crayfish are consumed as seafood and play important roles in food chains and food webs. Numerous studies are available on the accumulation of microplastics in tissues such as the gills, hepatopancreas and gastrointestinal tract in these organisms. Experimental studies have also highlighted the toxic effects of microplastics such as oxidative stress, immunotoxicity and reproductive and developmental toxicity in them. This review also summarizes the ecological impacts and implications in human beings as well as lacunae with regard to microplastic uptake in Decapods.
Collapse
|
7
|
Klein K, Heß S, Schulte-Oehlmann U, Oehlmann J. Locomotor behavior of Neocaridina palmata: a study with leachates from UV-weathered microplastics. PeerJ 2021; 9:e12442. [PMID: 34820186 PMCID: PMC8588861 DOI: 10.7717/peerj.12442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/15/2021] [Indexed: 02/02/2023] Open
Abstract
Weathering of plastics leads to the formation of increasingly smaller particles with the release of chemical compounds. The latter occurs with currently unknown environmental impacts. Leachate-induced effects of weathered microplastics (MPs) are therefore of increasing concern. To investigate the toxicity of the chemical mixtures from such plastics, we exposed the freshwater shrimp Neocaridina palmata to enriched leachates from unweathered and artificially weathered (UV-A/B light) MPs (≤1 mm) from recycled low-density polyethylene (LDPE-R) pellets and from a biodegradable, not fully bio-based starch blend (SB) foil. We analyzed the individual locomotor activity (moved distance and frozen events) on day 1, 3, 7 and 14 of exposure to five leachate concentrations equivalent to 0.40–15.6 g MPs L−1, representing the upper scale of MPs that have been found in the environment. The median moved distance did not change as a function of concentration, except for the unweathered SB treatment on day 14 that indicated hyperactivity with increasing concentrations. Significant impacts were solely detected for few concentrations and exposure days. Generally, no consistent trend was observed across the experiments. We further assessed the baseline toxicity of the samples in the Microtox assay and detected high bioluminescence inhibitions of the bacterium Aliivibrio fischeri. This study demonstrates that neither the recycled nor the biodegradable material are without impacts on test parameters and therefore cannot be seen as safe alternative for conventional plastics regarding the toxicity. However, the observed in vitro toxicity did not result in substantial effects on the behavior of shrimps. Overall, we assume that the two endpoints examined in the atyid shrimp N. palmata were not sensitive to chemicals leaching from plastics or that effects on the in vivo level affect other toxic endpoints which were not considered in this study.
Collapse
Affiliation(s)
- Kristina Klein
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sebastian Heß
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Ulrike Schulte-Oehlmann
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Drago C, Weithoff G. Variable Fitness Response of Two Rotifer Species Exposed to Microplastics Particles: The Role of Food Quantity and Quality. TOXICS 2021; 9:toxics9110305. [PMID: 34822696 PMCID: PMC8619062 DOI: 10.3390/toxics9110305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022]
Abstract
Plastic pollution is an increasing environmental problem, but a comprehensive understanding of its effect in the environment is still missing. The wide variety of size, shape, and polymer composition of plastics impedes an adequate risk assessment. We investigated the effect of differently sized polystyrene beads (1-, 3-, 6-µm; PS) and polyamide fragments (5–25 µm, PA) and non-plastics items such as silica beads (3-µm, SiO2) on the population growth, reproduction (egg ratio), and survival of two common aquatic micro invertebrates: the rotifer species Brachionus calyciflorus and Brachionus fernandoi. The MPs were combined with food quantity, limiting and saturating food concentration, and with food of different quality. We found variable fitness responses with a significant effect of 3-µm PS on the population growth rate in both rotifer species with respect to food quantity. An interaction between the food quality and the MPs treatments was found in the reproduction of B. calyciflorus. PA and SiO2 beads had no effect on fitness response. This study provides further evidence of the indirect effect of MPs in planktonic rotifers and the importance of testing different environmental conditions that could influence the effect of MPs.
Collapse
Affiliation(s)
- Claudia Drago
- Department for Ecology and Ecosystem Modelling, University of Potsdam, 14469 Potsdam, Germany;
- Correspondence:
| | - Guntram Weithoff
- Department for Ecology and Ecosystem Modelling, University of Potsdam, 14469 Potsdam, Germany;
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| |
Collapse
|