1
|
Yan Z, Qin G, Shi X, Jiang X, Cheng Z, Zhang Y, Nan N, Cao F, Qiu X, Sang N. Multilevel Screening Strategy to Identify the Hydrophobic Organic Components of Ambient PM 2.5 Associated with Hepatocellular Steatosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10458-10469. [PMID: 38836430 DOI: 10.1021/acs.est.3c10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Hepatic steatosis is the first step in a series of events that drives hepatic disease and has been considerably associated with exposure to fine particulate matter (PM2.5). Although the chemical constituents of particles matter in the negative health effects, the specific components of PM2.5 that trigger hepatic steatosis remain unclear. New strategies prioritizing the identification of the key components with the highest potential to cause adverse effects among the numerous components of PM2.5 are needed. Herein, we established a high-resolution mass spectrometry (MS) data set comprising the hydrophobic organic components corresponding to 67 PM2.5 samples in total from Taiyuan and Guangzhou, two representative cities in North and South China, respectively. The lipid accumulation bioeffect profiles of the above samples were also obtained. Considerable hepatocyte lipid accumulation was observed in most PM2.5 extracts. Subsequently, 40 of 695 components were initially screened through machine learning-assisted data filtering based on an integrated bioassay with MS data. Next, nine compounds were further selected as candidates contributing to hepatocellular steatosis based on absorption, distribution, metabolism, and excretion evaluation and molecular dockingin silico. Finally, seven components were confirmed in vitro. This study provided a multilevel screening strategy for key active components in PM2.5 and provided insight into the hydrophobic PM2.5 components that induce hepatocellular steatosis.
Collapse
Affiliation(s)
- Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Xiaodi Shi
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xing Jiang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Zhen Cheng
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Yaru Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Fuyuan Cao
- Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Shanxi 030006, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| |
Collapse
|
2
|
Chen W, Ge P, Deng M, Liu X, Lu Z, Yan Z, Chen M, Wang J. Toxicological responses of A549 and HCE-T cells exposed to fine particulate matter at the air-liquid interface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27375-27387. [PMID: 38512571 PMCID: PMC11052810 DOI: 10.1007/s11356-024-32944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Fine particulate matter (PM2.5) can enter the human body in various ways and have adverse effects on human health. Human lungs and eyes are exposed to the air for a long time and are the first to be exposed to PM2.5. The "liquid immersion exposure method" has some limitations that prevent it from fully reflecting the toxic effects of particulate matter on the human body. In this study, the collected PM2.5 samples were chemically analyzed. An air-liquid interface (ALI) model with a high correlation to the in vivo environment was established based on human lung epithelial cells (A549) and immortalized human corneal epithelial cells (HCE-T). The VITROCELL Cloud 12 system was used to distribute PM2.5 on the cells evenly. After exposure for 6 h and 24 h, cell viability, apoptosis rate, reactive oxygen species (ROS) level, expression of inflammatory factors, and deoxyribonucleic acid (DNA) damage were measured. The results demonstrated significant dose- and time-dependent effects of PM2.5 on cell viability, cell apoptosis, ROS generation, and DNA damage at the ALI, while the inflammatory factors showed dose-dependent effects only. It should be noted that even short exposure to low doses of PM2.5 can cause cell DNA double-strand breaks and increased expression of γ-H2AX, indicating significant genotoxicity of PM2.5. Increased abundance of ROS in cells plays a crucial role in the cytotoxicity induced by PM2.5 exposure These findings emphasize the significant cellular damage and genotoxicity that may result from short-term exposure to low levels of PM2.5.
Collapse
Affiliation(s)
- Wankang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Pengxiang Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Minjun Deng
- Ningxia Meteorological Service Center, Yinchuan, 750002, China
| | - Xiaoming Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhenyu Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhansheng Yan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
3
|
Yan Z, Ge P, Lu Z, Liu X, Cao M, Chen W, Chen M. The Cytotoxic Effects of Fine Particulate Matter (PM 2.5) from Different Sources at the Air-Liquid Interface Exposure on A549 Cells. TOXICS 2023; 12:21. [PMID: 38250977 PMCID: PMC10821317 DOI: 10.3390/toxics12010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
The health of humans has been negatively impacted by PM2.5 exposure, but the chemical composition and toxicity of PM2.5 might vary depending on its source. To investigate the toxic effects of particulate matter from different sources on lung epithelial cells (A549), PM2.5 samples were collected from residential, industrial, and transportation areas in Nanjing, China. The chemical composition of PM2.5 was analyzed, and toxicological experiments were conducted. The A549 cells were exposed using an air-liquid interface (ALI) exposure system, and the cytotoxic indicators of the cells were detected. The research results indicated that acute exposure to different sources of particulate matter at the air-liquid interface caused damage to the cells, induced the production of ROS, caused apoptosis, inflammatory damage, and DNA damage, with a dose-effect relationship. The content of heavy metals and PAHs in PM2.5 from the traffic source was relatively high, and the toxic effect of the traffic-source samples on the cells was higher than that of the industrial- and residential-source samples. The cytotoxicity of particulate matter was mostly associated with water-soluble ions, carbon components, heavy metals, PAHs, and endotoxin, based on the analysis of the Pearson correlation. Oxidative stress played an important role in PM2.5-induced biological toxicity.
Collapse
Affiliation(s)
- Zhansheng Yan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Pengxiang Ge
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Zhenyu Lu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Xiaoming Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Maoyu Cao
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China;
| | - Wankang Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| |
Collapse
|
4
|
Goodarzi B, Azimi Mohammadabadi M, Jafari AJ, Gholami M, Kermani M, Assarehzadegan MA, Shahsavani A. Investigating PM 2.5 toxicity in highly polluted urban and industrial areas in the Middle East: human health risk assessment and spatial distribution. Sci Rep 2023; 13:17858. [PMID: 37857811 PMCID: PMC10587072 DOI: 10.1038/s41598-023-45052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023] Open
Abstract
Exposure to particulate matter (PM) can be considered as a factor affecting human health. The aim of this study was to investigate the concentration of PM2.5 and heavy metals and their influence on survival of A549 human lung cells in exposure to PM2.5 breathing air of Ahvaz city. In order to assess the levels of PM2.5 and heavy metals, air samples were collected from 14 sampling stations positioned across Ahvaz city during both winter and summer seasons. The concentration of heavy metals was determined using ICP OES. Next, the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was employed to ascertain the survival rate of A549 cells. The findings from this research demonstrated that average PM2.5 of the study period was (149.5 μg/m3). Also, the average concentration of PM2.5 in the urban area in winter and summer was (153.3- and 106.9 μg/m3) and in the industrial area this parameter was (191.6 and 158.3 μg/m3). The average concentration of metals (ng/m3) of urban areas against industrial, Al (493 vs. 485), Fe (536 vs. 612), Cu (198 vs. 212), Ni (128 vs. 129), Cr (48.5 vs. 54), Cd (118 vs. 124), Mn (120 vs. 119), As (51 vs. 67), Hg (37 vs. 50), Zn (302 vs. 332) and Pb (266 vs. 351) were obtained. The results of the MTT assay showed that the highest percentage of cell survival according to the exposure concentration was 25 > 50 > 100 > 200. Also, the lowest percentage of survival (58.8%) was observed in the winter season and in industrial areas with a concentration of 200 μg/ml. The carcinogenic risk assessment of heavy metals indicated that except for Cr, whose carcinogenicity was 1.32E-03, other metals were in the safe range (10-4-10-6) for human health. The high concentration of PM2.5 and heavy metals can increase respiratory and cardiovascular diseases and reduce the public health level of Ahvaz citizens.
Collapse
Affiliation(s)
- Babak Goodarzi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Maryam Azimi Mohammadabadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Amma C, Inomata Y, Kohno R, Satake M, Furukawa A, Nagata Y, Sugiyama H, Seto T, Suzuki R. Copper in airborne fine particulate matter (PM 2.5) from urban sites causes the upregulation of pro-inflammatory cytokine IL-8 in human lung epithelial A549 cells. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5879-5891. [PMID: 37179508 DOI: 10.1007/s10653-023-01599-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Fine atmospheric particles, such as PM2.5, are strongly related to the onset and exacerbation of inflammatory responses leading to the development of respiratory and cardiovascular diseases. PM2.5 is a complex mixture of tiny particles with different properties (i.e., size, morphology, and chemical components). Moreover, the mechanism by which PM2.5 induces inflammatory responses has not been fully elucidated. Therefore, it is necessary to determine the composition of PM2.5 to identify the main factors causing PM2.5-associated inflammation and diseases. In the present study, we investigated PM2.5 from two sites (Fukue, a remote monitoring site, and Kawasaki, an urban monitoring site) with greatly different environments and PM2.5 compositions. The results of ICP-MS and EDX-SEM indicated that PM2.5 from Kawasaki contained more metals and significantly induced the expression of the pro-inflammatory cytokine gene IL-8 compared to the PM2.5 from Fukue. We also verified the increased secretion of IL-8 protein from exposure to PM2.5 from Kawasaki. We further investigated their effects on inflammatory response and cytotoxicity using metal nanoparticles (Cu, Zn, and Ni) and ions and found that the Cu nanoparticles caused a dose-dependent increase in IL-8 expression together with significant cell death. We also found that Cu nanoparticles enhanced the secretion of IL-8 protein. These results suggest that Cu in PM2.5 is involved in lung inflammation.
Collapse
Affiliation(s)
- Chisato Amma
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Yayoi Inomata
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Risa Kohno
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Minami Satake
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Atsushi Furukawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Yuka Nagata
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hironori Sugiyama
- Instrumental Analysis Division, Engineering and Technology Department, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Takafumi Seto
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
6
|
Gu Y, Xu H, Feng R, Cheng Y, Han B, Ho KF, Wang Z, He Y, Qu L, Ho SSH, Sun J, Shen Z, Cao J. Associations of personal exposure to domestic heating and cooking fuel emissions and epidemiological effects on rural residents in the Fenwei Plain, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159217. [PMID: 36206913 DOI: 10.1016/j.scitotenv.2022.159217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Solid fuel combustion for domestic heating in northern China in the wintertime is of great environmental and health concern. This study assesses personal exposure to particulate matter with different aerodynamic diameters and multiple gaseous pollutants from 123 rural residents in Yuncheng, the Fenwei Plain. The subjects are divided into groups based on the unique energy source applied, including biomass, coal, and electricity/no heating activities. The health effects of the exposures are expressed with four urinary biomarkers. The personal exposure levels to three different aerodynamic particle sizes (i.e., PM10, PM2.5, and PM1) of the electricity/no heating group are 5.1 % -12 % lower than those of the coal group. In addition, the exposure levels are 25 %-40 % lower for carbon monoxide (CO) and 10.8 %-20.3 % lower for ozone (O3) in the electricity/no heating group than the other two fuel groups. C-reactive protein (CRP) in the urine of the participants in biomass and coal groups is significantly higher than that in the electricity/no heating group, consistent with the observations on other biomarkers. Increases in 8-hydroxy-2 deoxyguanosine (8-OHdG), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) are observed for the exposures to higher concentrations of air pollutants. For instance, PMs and nitrogen dioxide (NO2) show significant impacts on positive correlations with 8-OHdG and IL-8, while O3 positively correlates with CRP. PM1 exhibits higher effects on the biomarkers than the gaseous pollutants, especially on VEGF and IL-8. The study indicates that excessive use of traditional domestic solid fuels could pose severe health effects on rural residents. The promotion of using clean energy is urgently needed in the rural areas of northern China.
Collapse
Affiliation(s)
- Yunxuan Gu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Rong Feng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kin Fai Ho
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Zexuan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yansu He
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Linli Qu
- Hong Kong Premium Services and Research Laboratory, Kowloon, Hong Kong, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United States
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Junji Cao
- SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
7
|
Rodríguez-Báez AS, Medellín-Garibay SE, Rodríguez-Aguilar M, Sagahón-Azúa J, Milán-Segoviaa RDC, Flores-Ramírez R. Environmental endocrine disruptor concentrations in urine samples from Mexican Indigenous women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38645-38656. [PMID: 35080728 DOI: 10.1007/s11356-021-18197-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 05/26/2023]
Abstract
The Indigenous communities in Mexico show significant degrees of vulnerability to pollution due to the lack of knowledge of health risks, traditions, low levels of support, and restricted access to healthcare. As a result, exposure to environmental endocrine disruptors increases in these populations through plastic components or indoor air pollution. Therefore, the aim of the study was to evaluate the exposure to phthalate metabolites, 1-hydroxypyrene, and bisphenol A through biomonitoring data from indigenous Mexican women. A total of 45 women from the Tocoy community in San Luis Potosí, Mexico, were included. Urine samples were analyzed for Bisphenol A and 4 phthalate metabolites by ultra-performance liquid chromatography couples to tandem mass spectrometry; additionally, the 1-hydroxypyrene concentrations were evaluated by high-performance liquid chromatography coupled to a fluorescence detector. Among the main pollution sources were the use of plastic containers and burning garbage (98-100%). Indigenous women presented an exposure of 100% to mono-2-ethyl phthalate, mono-n-butyl phthalate, and 1-hydroxypyrene, with a median (25th-75th percentiles) of 17,478 (11,362-37,355), 113.8 (61.7-203.5), and 1.2 (0.9-1.7) µg/g creatinine, respectively. The major findings show urinary mono-2-ethyl phthalate concentrations higher than those measured from other studies. Therefore, these results show an impressive exposure to di(2-ethylhexyl) phthalate in Indigenous women. The current study reflects the absence of regulatory policies in marginalized populations. It highlights the need to design strategies that mitigate exposure and the importance of biological monitoring to evaluate and prevent health risk associated with exposure to environmental endocrine disruptors.
Collapse
Affiliation(s)
- Ana Socorro Rodríguez-Báez
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico
| | - Susanna Edith Medellín-Garibay
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico.
| | - Maribel Rodríguez-Aguilar
- Department of Basic Sciences, Universidad de Quintana Roo, MéxicoCenter for Applied Research in Environment and Health, CIACYT, Autonomous University of San Luis Potosi, San Luis Potosi, Quintana Roo, Mexico
| | - Julia Sagahón-Azúa
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico
| | - Rosa Del Carmen Milán-Segoviaa
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico
| | - Rogelio Flores-Ramírez
- Coordination for Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, #550 Ave. Sierra Leona, C.P. 78210, San Luis Potosi, Mexico.
| |
Collapse
|