1
|
Jankowska M, Hrynko I, Rutkowska E, Łozowicka B. Dissipation, processing factors and dietary risk assessment of the bioinsecticide abamectin in herbal plants belonging to Lamiaceae family from open field to herbal tea infusion. CHEMOSPHERE 2024; 358:142159. [PMID: 38679175 DOI: 10.1016/j.chemosphere.2024.142159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Abamectin, the mixture of avermectin B1a and B1b, is widely used as a bioinsecticide and is an alternative to chemical pest control from insects. To our knowledge, its behaviour is not fully recognized, especially in herbs. Thus, the objective of this study was to investigate the environmental fate of abamectin in herbal plants belonging to the Lamiaceae family, its dissipation in open field studies laboratory processing treatments and dietary risk assessment. Three medicinally and culinary important species of herbs: Melissa officinalis L., Mentha × piperita L. and Salvia L. were treated with single and double dose than recommended on the label during their cultivation (BBCH 11-29). Residues were monitored using the QuEChERS method followed by the LC-MS/MS. The dissipation pattern of the sum of avermectin B1a and B1b and their persistence were observed 14 d after spraying. Abamectin decline was very rapid in plants and followed the first-order kinetics model. The half-life (t1/2) was in the range of 0.96-1.08 d (single dose) and 0.93-1.02 d (double dose). The pre-harvest intervals (decrease to the level of 0.01 mg kg-1) were 7.29-7.92 d at single and 7.99-8.64 d at double dose application. Herbal infusion preparation in previously washed and dried mint, lemon balm and sage leaves was the key processing step in the removal of abamectin residues. The reduction of initial deposits after single dose treatment was noted up to 65% (PF = 0.35-0.67) and up to 79% after double dose application (PF = 0.21-0.72) in herbal tea. Acute risk assessment of children and adults for the highest residues in EFSA PRIMo model at single and double dose expressed as hazard quotients (HQ) were <1, indicating no risk to humans via consumption of the herbal products. The data provide a better understanding of abamectin behaviour in herbal plants and can help assure herbs' safety for consumers.
Collapse
Affiliation(s)
- Magdalena Jankowska
- Institute of Plant Protection - National Research Institute, Chelmonskiego Str. 22, Bialystok, 15-195, Poland.
| | - Izabela Hrynko
- Institute of Plant Protection - National Research Institute, Chelmonskiego Str. 22, Bialystok, 15-195, Poland
| | - Ewa Rutkowska
- Institute of Plant Protection - National Research Institute, Chelmonskiego Str. 22, Bialystok, 15-195, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chelmonskiego Str. 22, Bialystok, 15-195, Poland
| |
Collapse
|
2
|
Buscaroli E, Lavrnić S, Blasioli S, Gentile SL, Solimando D, Mancuso G, Anconelli S, Braschi I, Toscano A. Efficient dissipation of acetamiprid, metalaxyl, S-metolachlor and terbuthylazine in a full-scale free water surface constructed wetland in Bologna province, Italy: A kinetic modeling study. ENVIRONMENTAL RESEARCH 2024; 247:118275. [PMID: 38246295 DOI: 10.1016/j.envres.2024.118275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
The study investigated the dissipation ability of a vegetated free water surface (FWS) constructed wetland (CW) in treating pesticides-contaminated agricultural runoff/drainage water in a rural area belonging to Bologna province (Italy). The experiment simulated a 0.1% pesticide agricultural water runoff/drainage event from a 12.5-ha farm by dissolving acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine in 1000 L of water and pumping it into the CW. Water and sediment samples from the CW were collected for 4 months at different time intervals to determine pesticide concentrations by multiresidue extraction and chromatography-mass spectrometry analyses. In parallel, no active compounds were detected in the CW sediments during the experimental period. Pesticides dissipation in the wetland water compartment was modeled according to best data practices by fitting the data to Single First Order (SFO), First Order Multi-Compartment (FOMC) and Double First Order in Parallel (DFOP) kinetic models. SFO (except for metalaxyl), FOMC and DFOP kinetic models adequately predicted the dissipation for the four investigated molecules, with the DFOP kinetic model that better fitted the observed data. The modeled distribution of each pesticide between biomass and water in the CW highly correlated with environmental indexes as Kow and bioconcentration factor. Computed DT50 by DFOP model were 2.169, 8.019, 1.551 and 2.047 days for acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine, respectively. Although the exact degradation mechanisms of each pesticide require further study, the FWS CW was found to be effective in treating pesticides-contaminated agricultural runoff/drainage water within an acceptable time. Therefore, this technology proved to be a valuable tool for mitigating pesticides runoff occurring after intense rain events.
Collapse
Affiliation(s)
- Enrico Buscaroli
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | - Stevo Lavrnić
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | - Sonia Blasioli
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | | | - Domenico Solimando
- Consorzio di Bonifica Canale Emiliano Romagnolo, Via E. Masi 8, 40137 Bologna, Italy
| | - Giuseppe Mancuso
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | - Stefano Anconelli
- Consorzio di Bonifica Canale Emiliano Romagnolo, Via E. Masi 8, 40137 Bologna, Italy
| | - Ilaria Braschi
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy.
| | - Attilio Toscano
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| |
Collapse
|
3
|
Ji S, Cheng H, Rinklebe J, Liu X, Zhu T, Wang M, Xu H, Wang S. Remediation of neonicotinoid-contaminated soils using peanut shell biochar and composted chicken manure: Transformation mechanisms of geochemical fractions. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133619. [PMID: 38310841 DOI: 10.1016/j.jhazmat.2024.133619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
Soil remediation techniques are promising approaches to relieve the adverse environmental impacts in soils caused by neonicotinoids application. This study systematically investigated the remediation mechanisms for peanut shell biochar (PSB) and composted chicken manure (CCM) on neonicotinoid-contaminated soils from the perspective of transformation of geochemical fractions by combining a 3-step sequential extraction procedure and non-steady state model. The neonicotinoid geochemical fractions were divided into labile, moderate-adsorbed, stable-adsorbed, bound, and degradable fractions. The PSB and CCM addition stimulated the neonicotinoid transformation in soils from labile fraction to moderate-adsorbed and stable-adsorbed fractions. Compared with unamended soils, the labile fractions decreased from 47.6% ± 11.8% of the initial concentrations to 12.1 ± 9.3% in PSB-amended soils, and 7.1 ± 4.9% in PSB and CCM-amended soils, while the proportions of moderate-adsorbed and stable-adsorbed fractions correspondingly increased by 1.8-2.4 times and 2.3-4.8 times, respectively. A small proportion (<4.8%) in bound fractions suggested there were rather limited bound-residues after 48 days incubation. The PSB stimulated the -NO2-containing neonicotinoid-degraders, which promoted the degradable fractions of corresponding neonicotinoids by 8.2 ± 6.3%. Degradable fraction of neonicotinoids was the dominant fate in soils, which accounted for 58.3 ± 16.7%. The findings made beneficial theoretical supplements and provided valuable empirical evidence for the remediation of neonicotinoid-contaminated soils.
Collapse
Affiliation(s)
- Shu Ji
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haomiao Cheng
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Xiang Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Tengyi Zhu
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Menglei Wang
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Shanghai Construction No.2 (Group) Co., Ltd, Shanghai 200080, China
| | - Hanyang Xu
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shengsen Wang
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|