1
|
Jha AK, Chakraborty S, Biswas JK. Green synthesis of low-cost graphene oxide-nano zerovalent iron composite from solid waste for photocatalytic removal of antibiotics. iScience 2024; 27:111486. [PMID: 39758997 PMCID: PMC11700629 DOI: 10.1016/j.isci.2024.111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/17/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
This study develops a graphene oxide-nano zerovalent iron (GO-nZVI) composite for the efficient removal of tetracycline and ciprofloxacin from water. The composite was synthesized using sugarcane bagasse as the matrix for graphene oxide (GO) and Sal leaf extract to reduce iron into nano zerovalent iron (nZVI). Microscopic analysis confirmed multiple GO layers with nZVI particles on their surface, while XRD and Raman spectroscopy verified the crystalline nature of the composite. Photocatalytic degradation achieved removal efficiencies of 91% for tetracycline and 92% for ciprofloxacin. The microbial assays showed that the degraded antibiotics were non-toxic, ensuring their safe disposal. Treatment costs were estimated at 53 USD for tetracycline and 68 USD for ciprofloxacin per 10,000 L of contaminated water. This approach provides a sustainable solution by employing agricultural waste in environmental remediation, supporting a circular economy model for tackling antibiotic contamination in water.
Collapse
Affiliation(s)
- Aditya Kumar Jha
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India
- Department of Civil Engineering, Cambridge Institute of Technology, Ranchi 835103, India
| | - Sukalyan Chakraborty
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235 West Bengal, India
- International Centre for Ecological Engineering, University of Kalyani, Kalyani 741235 West Bengal, India
| |
Collapse
|
2
|
Li Y, Zhang L, Wang J, Xu S, Zhang Z, Guan Y. Activation of persulfate by a layered double oxide supported sulfidated nano zero-valent iron for efficient degradation of 2,2',4,4'-tetrabromodiphenyl ether in soil. ENVIRONMENT INTERNATIONAL 2024; 194:109098. [PMID: 39579442 DOI: 10.1016/j.envint.2024.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
The nano zero-valent iron (nZVI) activated persulfate (PS) is recognized as a promising approach to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), which is ubiquitous in the soil at electronic waste sites. However, all the reported studies were performed in liquids, gaps in the real behaviour and microbial contribution to the degradation of BDE-47 in soil media need to be urgently filled. The removal efficiency of BDE-47 is low using traditional nZVI as activator because of its aggregation and corrosion. Herein, we designed a novel layered double oxide supported sulfidated nano zero-valent iron (S-nZVI@LDO) composite and explored the performance of S-nZVI@LDO/PS to remediate BDE-47 contaminated soil. The results showed that S-nZVI@LDO has excellent stability and superior reduction capability. It could couple PS to achieve a rapid and efficient degradation of BDE-47, and the removal efficiency reached 92.31 % (5 mg/kg) within 6 h, which was much higher than that of n-ZVI/PS (53.38 %) or S-nZVI/PS (75.69 %). The kinetic constant of BDE-47 degradation by S-nZVI@LDO/PS was 23.6 and 3.7 times higher than that by single S-nZVI@LDO and nZVI/PS, respectively. It is attributable to the efficient production of SO4•-, •OH, O2•-, and 1O2 in the system, in which SO4•- and •OH dominated. The bioinformatic analysis demonstrate that soil remediation by S-nZVI@LDO/PS significantly enriched aromatic compounds-degrading bacteria and increased the abundance of hydrocarbon degradation functions. Microbial degradation may play important roles in the BDE-47 degradation and soil quality recovery. The identification of degradation pathways suggests that BDE-47 was degraded to very low-toxic products based on GHS toxicity prediction through a series process of debromination, hydroxylation, cleavage central oxygen, and ring opening, or even completely mineralized. The findings may provide significant implications for the in-situ clean-up of brominated flame retardants in contaminated soil using S-nZVI@LDO/PS Fenton-like system.
Collapse
Affiliation(s)
- Yibing Li
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Lixun Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Jing Wang
- JiangSu Longhuan Environmental Technology Co., LTD, Changzhou 213000, PR China
| | - Shan Xu
- JiangSu Longhuan Environmental Technology Co., LTD, Changzhou 213000, PR China
| | - Zhengfang Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuntao Guan
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Liang D, Zeng G, Lei X, Sun D. Advancements and Challenges in Nanoscale Zero-Valent Iron-Activated Persulfate Technology for the Removal of Endocrine-Disrupting Chemicals. TOXICS 2024; 12:814. [PMID: 39590993 PMCID: PMC11598129 DOI: 10.3390/toxics12110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
Endocrine-disrupting chemicals are a new class of pollutants that can affect hormonal metabolic processes in animals and humans. They can enter the aquatic environment through various pathways and gradually become enriched, thus posing a serious threat to the endocrine and physiological systems of both animals and humans. Nano zero-valent iron has promising applications in endocrine disruptor removal due to its excellent reducing properties and high specific surface area. However, given the dispersed focus and fragmented results of current studies, a comprehensive review is still lacking. In this paper, it was analyzed that the types of endocrine disruptors and their emission pathways reveal the sources of these compounds. Then, the main technologies currently used for endocrine disruptor treatment are introduced, covering physical, chemical, and biological treatment methods, with a special focus on persulfate oxidation among advanced oxidation technologies. Also, the paper summarizes the various activation methods of persulfate oxidation technology and proposes the nZVI-activated persulfate technology as the most promising means of treatment. In addition, this paper reviews the research progress of different modification methods of nZVI in activating persulfate for the removal of EDCs. Finally, the discussion includes recycling studies of nZVI/PS technology and emphasizes the urgency and importance of endocrine disruptor treatment. The review of this paper provides further scientific basis and technical support for nZVI/PS technology in the field of endocrine disruptor management.
Collapse
Affiliation(s)
- Dong Liang
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Guoming Zeng
- Chongqing Academy of Science and Technology, Chongqing 401123, China
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xiaoling Lei
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
4
|
Zhao X, Xu H, Chen M, Chen Y, Kong X. Enhancement of norfloxacin degradation by citrate in S-nZVI@Ps system: Chelation and FeS layer. ENVIRONMENTAL RESEARCH 2024; 245:117981. [PMID: 38142729 DOI: 10.1016/j.envres.2023.117981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/02/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
The degradation of organic pollution by sulfur-modified nano zero-valent iron(S-nZVI) combined with advanced oxidation systems has been extensively studied. However, the low utilization of nZVI and low reactive oxygen species (ROS) yield in the system have limited its wide application. Herein, a natural organic acid commonly found in citrus fruits, citric acid (CA), was combined with the conventional S-nZVI@Ps system to enhance the degradation of norfloxacin (NOR). The addition of CA increased the NOR removal by about 31% compared with the conventional S-nZVI@Ps system under the same experimental conditions. Among them, the enhanced effect of CA is mainly reflected in its ability to promote the release of Fe2+ and accelerate the cycling of Fe2+ and Fe3+ to further improve the utilization of nZVI and the generation of ROS; it also promotes the dissolution of the active substance (FeS) on the surface of S-nZVI to further improve the degradation rate of NOR. More importantly, the chelate of CA and Fe2+ (CA-Fe2+) had higher reactivity than alone Fe2+. Free radical quenching and electron spin resonance (ESR) experiments indicated that the main ROS for the degradation of NOR in the CA/S-nZVI@Ps system were SO4•- and OH•. CA-bound sulfur-modifying effects on NOR degradation was systematically investigated, and the degradation mechanism of NOR in CA/S-nZVI@Ps system was explored by various techniques. Additionally, the effect of common anions in water matrix on the degradation of NOR in CA/S-nZVI@Ps system and its degradation of various pollutants were also studied. This study provides a new perspective to enhance the degradation of pollutants by S-nZVI combined with advanced oxidation system, which can help to solve the application boundary problem of S-nZVI.
Collapse
Affiliation(s)
- Xuefang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Hui Xu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Minzhang Chen
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yong Chen
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiuqing Kong
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
5
|
Xue W, Chen X, Liu H, Li J, Wen S, Guo J, Shi X, Gao Y, Wang R, Xu Y. Activation of persulfate by biochar-supported sulfidized nanoscale zero-valent iron for degradation of ciprofloxacin in aqueous solution: process optimization and degradation pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10950-10966. [PMID: 38214863 DOI: 10.1007/s11356-024-31931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The pollution of antibiotics, specifically ciprofloxacin (CIP), has emerged as a significant issue in the aquatic environment. Advanced oxidation processes (AOPs) are capable of achieving stable and efficient removal of antibiotics from wastewater. In this work, biochar-supported sulfidized nanoscale zero-valent iron (S-nZVI/BC) was adopted to activate persulfate (PS) for the degradation of CIP. The impacts of different influencing factors such as S/Fe molar ratios, BC/S-nZVI mass ratios, PS concentration, S-nZVI/BC dosage, CIP concentration, initial pH, coexisting anions, and humic acid on CIP degradation efficiency were explored by batch experiments. The results demonstrated that the highest degradation ability of S-nZVI/BC was achieved when the S/Fe molar ratio was 0.07 and the BC/S-nZVI mass ratio was 1:1. Under the experimental conditions with 0.6 g/L S-nZVI/BC, 2 mmol/L PS, and 10 mg/L CIP, the degradation rate reached 97.45% after 90 min. The S-nZVI/BC + PS system showed significant degradation in the pH range from 3 to 9. The coexisting anions affected the CIP degradation efficiency in the following order: CO32- > NO3- > SO42- > Cl-. The radical quenching experiments and electron paramagnetic resonance (EPR) revealed that oxidative species, including SO4•-, HO•, •O2-, and 1O2, all contribute to the degradation of CIP, in which •O2- plays a particularly prominent role. Furthermore, the probable degradation pathway of CIP was explored according to the 12 degradation intermediates identified by LC-MS. This study provides a new idea for the activation method of PS and presents a new approach for the treatment of aqueous antibiotics with highly catalytic active nanomaterials.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
6
|
Xue W, Li J, Chen X, Liu H, Wen S, Shi X, Guo J, Gao Y, Xu J, Xu Y. Recent advances in sulfidized nanoscale zero-valent iron materials for environmental remediation and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101933-101962. [PMID: 37659023 DOI: 10.1007/s11356-023-29564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, sulfidized nanoscale zero-valent iron (S-nZVI) has been developed as a promising tool for the remediation of contaminated soil, sediment, and water. Although most studies have focused on applying S-nZVI for clean-up purposes, there is still a lack of systematic summary and discussion from its synthesis, application, to toxicity assessment. This review firstly summarized and compared the properties of S-nZVI synthesized from one-step and two-step synthesis methods, and the modification protocols for obtaining better stability and reactivity. In the context of environmental remediation, this review outlined an update on the latest development of S-nZVI for removal of heavy metals, organic pollutants, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) and also discussed the underlying removal mechanisms. Environmental factors affecting the remediation performance of S-nZVI (e.g., humic acid, coexisting ions, S/Fe molar ratio, pH, and oxygen condition) were highlighted. Besides, the application potential of S-nZVI in advanced oxidation processes (AOP), especially in activating persulfate, was also evaluated. The toxicity impacts of S-nZVI on the environmental microorganism were described. Finally, the future challenges and remaining restrains to be resolved for better applicability of S-nZVI are also proposed. This review could provide guidance for the environmental remediation with S-nZVI-based technology from theoretical basis and practical perspectives.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Jian Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Zhu X, Ji H, Hua G, Zhou L. Dynamic Release Characteristics and Kinetics of a Persulfate Sustained-Release Material. TOXICS 2023; 11:829. [PMID: 37888680 PMCID: PMC10611088 DOI: 10.3390/toxics11100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Sustained-release materials are increasingly being used in the delivery of oxidants for in situ chemical oxidation (ISCO) for groundwater remediation. Successful implementation of sustained-release materials depends on a clear understanding of the mechanism and kinetics of sustained release. In this research, a columnar sustained-release material (PS@PW) was prepared with paraffin wax and sodium persulfate (PS), and column experiments were performed to investigate the impacts of the PS@PW diameter and PS/PW mass ratio on PS release. The results demonstrated that a reduction in diameter led to an increase in both the rate and proportion of PS release, as well as a diminished lifespan of release. The release process followed the second-order kinetics, and the release rate constant was positively correlated with the PS@PW diameter. A matrix boundary diffusion model was utilized to determine the PS@PW diffusion coefficient of the PS release process, and the release lifespan of a material with a length of 500 mm and a diameter of 80 mm was predicted to be more than 280 days. In general, this research provided a better understanding of the release characteristics and kinetics of persulfate from a sustained-release system and could lead to the development of columnar PS@PW as a practical oxidant for in situ chemical oxidation of contaminated aquifers.
Collapse
Affiliation(s)
- Xueqiang Zhu
- Engineering Research Center of Mine Ecological Restoration, Ministry of Education, Xuzhou 221116, China; (X.Z.); (H.J.); (G.H.)
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Hanghang Ji
- Engineering Research Center of Mine Ecological Restoration, Ministry of Education, Xuzhou 221116, China; (X.Z.); (H.J.); (G.H.)
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Gang Hua
- Engineering Research Center of Mine Ecological Restoration, Ministry of Education, Xuzhou 221116, China; (X.Z.); (H.J.); (G.H.)
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Lai Zhou
- Engineering Research Center of Mine Ecological Restoration, Ministry of Education, Xuzhou 221116, China; (X.Z.); (H.J.); (G.H.)
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
8
|
Hou G, Huang Z, Ding X, Liu C. Exploring bisphenol S removal mechanism with multi-enzymes extracted from waste sludge and reed sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16156-16165. [PMID: 36175734 DOI: 10.1007/s11356-022-23310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
4,4'-Sulfonyl-diphenol (BPS), as a widespread environmental hormone-like micropollutant, is difficult to be degraded in the environment. In this study, the removal of BPS with multi-enzymes extracted from waste sludge and reed sediment was studied at 298 K, 310 K, and 328 K. Results show that BPS could be removed efficiently and was time-temperature dependent, which could involve enzymolysis and bio-flocculation. The mechanism and pathways of the enzymolysis were identified with ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Polymerization of BPS with enzymolysis further improved the removal by bio-flocculation due to the production of BPS oligomers. Furthermore, the interaction mechanism between BPS and multi-enzyme was explored through a series of spectroscopic experiments. Results show that more loose skeletal structure of the multi-enzymes and more hydrophobic microenvironment of the amino acid residues are responsible for the removal of BPS. This research not only provided a method for refractory micropollutants removal but also a way for the utilization of waste sludge and reed sediment.
Collapse
Affiliation(s)
- Guangying Hou
- School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
- Jinan Municipal City Administration, Jinan, Shandong, 250021, People's Republic of China
| | - Zaihui Huang
- School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiaohu Ding
- Weifang Ecological Environmental Protection Bureau, Weifang, Shandong, 261071, People's Republic of China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
- Shandong Kailin Environmental Protection Equipment Co., Ltd, Southeast Corner of the Intersection of Beihuan Road and Gudui Road, Juye County, Shandong Province, 274000, People's Republic of China.
| |
Collapse
|
9
|
Gao Y, Fang Z, Lin W, Chen H, Bhatnagar A, Li J, Xie Y, Bao Y, Chen J, Zhao H, Meng J, Chen W, Wang H. Large-flake graphene-modified biochar for the removal of bisphenol S from water: rapid oxygen escape mechanism for synthesis and improved adsorption performance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120847. [PMID: 36496064 DOI: 10.1016/j.envpol.2022.120847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The combined effects of graphene and biochar for enhanced adsorption of organic pollutants have not been demonstrated yet. Therefore, the mechanisms of graphene-modified biochar synthesis and its application to adsorption of contaminants remain unclear. In this study, the effect of flake-size graphene on biochar modification and its bisphenol S (BPS) adsorption performance was explored for the first time. Three sizes of graphene oxide were used as the precursor to prepare graphene/biochar composites using pyrolysis. It was found that the graphene with a small flake size was interspersed in the macropores of biochar, while the biochar was completely or mostly wrapped by the large-sized graphene sheet, which effectively prevented the agglomeration and pore blockage of biochar. Large-flake graphene oxide modified biochar (LGB) showed the highest adsorption capacity towards BPS, exhibiting 2.8 times higher adsorption than pristine biochar. Density functional theory (DFT) calculation suggested that the maximum diffusion barrier of O atoms in graphene coated cellulose (most frequently used biochar representative) could be reduced significantly (∼46%) at pyrolysis temperature of 873 K. Taking the advantage of small amount of graphene and enhanced adsorption performance, LGB could be a promising adsorbent for the removal of certain organic pollutants from wastewater and is conducive for the development of high-valued biochar modification.
Collapse
Affiliation(s)
- Yurong Gao
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, China
| | - Zheng Fang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Wenhui Lin
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Hanbo Chen
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, China
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Jianhong Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yanhai Xie
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Yanping Bao
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Junfeng Chen
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Hongting Zhao
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Jun Meng
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, China
| | - Wenfu Chen
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Guangdong Green Technologies Co., Ltd., Foshan, 528100, China.
| |
Collapse
|
10
|
Xu W, Zhang J, Xu T, Hu X, Shen C, Lou L. Could sulfidation enhance the long-term performance of nano-zero valent iron in the peroxymonosulfate activation to degrade 2-chlorobiphenyl? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120631. [PMID: 36370971 DOI: 10.1016/j.envpol.2022.120631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Sulfidation can enhance the hydrophobicity of nano-zero valent iron (nZVI) and improve its long-term degradation performance in reduction technology. However, whether sulfidation can enhance its long-term performance in sulfate radical-based advanced oxidation processes hasn't been systematically studied. Herein sulfide-modified nZVI (S-nZVI) was prepared by different sulfidation methods and S/Fe ratios. The behavior of S-nZVI on the peroxymonosulfatec (PMS) activation to degrade 2-chlorobiphenyl for continuous 5 rounds was investigated. The results showed that sulfidation couldn't always promote the long-term degradation performance. S-nZVI prepared by one-step sulfidation method with high S/Fe ratio (S-nZVIonestep-7%, S-nZVIonestep-14%) exhibited inferior degradation performance than unmodified nZVI (52.2%). This was because that the electron donor Fe0 was consumed rapidly and the crystalline lepidocrocite accumulated on the surface, thus inhibited PMS activation. In contrast, S-nZVI prepared by post-sulfidation method with high S/Fe ratio (S-nZVIpost-7%, S-nZVIpost-14%) exhibited more Fe0 residual, less FeOx accumulation, and more catalytic Fe2+ regeneration. Consequently, S-nZVIpost exhibited superior degradation capacity (69.3%). Moreover, the radical quenching experiments revealed that the primary free radicals involved in the degradation were transformed from SO4•- to •OH with prolongation of the degradation. Additionally, Fe (IV) contributed to the degradation through non-radical mechanism, especially in the S-nZVIpost-7%/PMS system.
Collapse
Affiliation(s)
- Weijian Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jin Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Tao Xu
- Hangzhou Zetian Chunlai Technology Co., Ltd., Hangzhou, People's Republic of China
| | - Xinyi Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China.
| |
Collapse
|