1
|
Mohammed K, Atlabachew M, Aragaw BA, Asmare ZG. Synthesis of Kaolin-Supported Nickel Oxide Composites for the Catalytic Oxidative Degradation of Methylene Blue Dye. ACS OMEGA 2024; 9:4287-4299. [PMID: 38313523 PMCID: PMC10832009 DOI: 10.1021/acsomega.3c05126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
Organic dye contamination of water is a contributing factor to environmental pollution and has a negative impact on aquatic ecology. In this study, unsupported NiO and kaolin-supported NiO composites were synthesized by a one-step wet impregnation-precipitation method through the precipitation of nickel hydroxide onto locally accessible, inexpensive, and easily treated kaolin surfaces by using sodium hydroxide as a precipitating agent. The product was calcined at 500 °C and used for the catalytic oxidative degradation of methylene blue (MB) dye in an aqueous solution. The morphology, structure, and interactions of the synthesized materials were explored by SEM, XRD, and FT-IR spectroscopy. The characterization results revealed the fabrication and the growth of NiO on the kaolin surface. To determine the catalytic oxidative degradation performance of the catalyst, many experiments have been performed using the MB dye as a model dye. The catalytic degradation tests confirmed the importance of NiO and the high catalytic activity of the synthesized NiO/kaolin composite toward MB dye degradation. The oxidative degradation results showed that the optimized precursor amount on the kaolin surface could efficiently enhance the removal of MB dye. The kinetic investigation of the catalytic degradation of MB dye fitted the pseudo-first-order kinetic model. High removal efficiency was observed after eight reuse cycles, proving the exceptional stability and reusability of the composite. The catalytic process also proceeded with a low activation energy of 30.5 kJ/mol. In conclusion, the kaolin-supported NiO composite was established to be a favorable catalyst to degrade a model dye (MB) from an aqueous solution in the presence of inexpensive and easily available NaOCl with a catalytic efficiency of the material higher than 99% of the 20.3 mg catalyst within 6 min with an apparent rate constant, kapp, higher than 0.44625 min-1, which is far better than that of the unsupported catalyst with a kapp of 0.0926 min-1 at 10 mg dose in 20 min.
Collapse
Affiliation(s)
| | - Minaleshewa Atlabachew
- Department of Chemistry,
College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar 6000, Ethiopia
| | - Belete Asefa Aragaw
- Department of Chemistry,
College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar 6000, Ethiopia
| | | |
Collapse
|
2
|
Talukder MM, Khan MMR, Amin MK. A Review on Polyaniline (PANI) Based Nanocomposites for Water Purification. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
3
|
Qin Y, Yuan J, Hu H, Shen Q, Hu S, Liu J, Luo X, Xu D. Construction of PANI‐ZnFe
2
O
4
/FAC materials with fly ash cenospheres beads as a carrier to enhance the degradation of Methylene Blue. ChemistrySelect 2023. [DOI: 10.1002/slct.202204488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Yu Qin
- School of Chemistry and Chemical Engineering Chongqing University of Science and Technology Chongqing No. 20 East University Town Road, Shapingba District Chongqing 401331 P.R. China
| | - Jinhai Yuan
- School of Chemistry and Chemical Engineering Chongqing University of Science and Technology Chongqing No. 20 East University Town Road, Shapingba District Chongqing 401331 P.R. China
| | - Haikun Hu
- School of Chemistry and Chemical Engineering Chongqing University of Science and Technology Chongqing No. 20 East University Town Road, Shapingba District Chongqing 401331 P.R. China
| | - Qiqi Shen
- School of Chemistry and Chemical Engineering Chongqing University of Science and Technology Chongqing No. 20 East University Town Road, Shapingba District Chongqing 401331 P.R. China
| | - Shiyue Hu
- School of Chemistry and Chemical Engineering Chongqing University of Science and Technology Chongqing No. 20 East University Town Road, Shapingba District Chongqing 401331 P.R. China
| | - Junhong Liu
- School of Chemistry and Chemical Engineering Chongqing University of Science and Technology Chongqing No. 20 East University Town Road, Shapingba District Chongqing 401331 P.R. China
| | - Xuanlan Luo
- School of Chemistry and Chemical Engineering Chongqing University of Science and Technology Chongqing No. 20 East University Town Road, Shapingba District Chongqing 401331 P.R. China
| | - Di Xu
- School of Chemistry and Chemical Engineering Chongqing University of Science and Technology Chongqing No. 20 East University Town Road, Shapingba District Chongqing 401331 P.R. China
| |
Collapse
|
4
|
Shi Q, Li X, Fu Y, Sun J, Tang T, Wang X, Ma Y, Tan H. Structurally colored aramid fabric construction and its application as a recyclable photonic catalyst. SOFT MATTER 2023; 19:701-707. [PMID: 36601785 DOI: 10.1039/d2sm01373h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Structural colors can be used in fabric coloring due to their bright color and non-fading properties. However, it is still a challenge to construct structural color on high crystallinity, smooth surfaced and yellow colored aramid fabrics. Herein, for the first time, photonic crystals (PCs) with structural color were constructed on aramid fabrics by introducing dopamine to modify aramid fabrics and synthesizing monodisperse high refractive index zinc sulfide nanoparticles (ZnS). The influence of the PC coatings on the structural color, mechanical properties, and thermal stability of the structurally colored aramid fabrics or fibers was further investigated. Moreover, due to the excellent catalytic properties of ZnS and the slow photon effects of PCs, the structurally colored fabrics showed good photocatalytic properties, which will be beneficial in reusing the catalysts, which is crucial to their application in the coloring of fabrics but also facilitates the recycling of waste PC coated aramid fabrics.
Collapse
Affiliation(s)
- Qingwen Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Xue Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Yin Fu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Jiuxiao Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuyi Wang
- High-Tech Organic Fibers Key Laboratory of Sichuan Province and China, Bluestar Chengrand Co., Ltd, China
| | - Yubin Ma
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Haiying Tan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
5
|
Synergetic photodegradation via inorganic–organic hybridization strategies: a review on preparations and applications of nanoparticle-hybridized polyaniline photocatalysts. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Zhang S, Khan A, Ali N, Malik S, Khan H, Ali N, Iqbal HMN, Bilal M. Designing, characterization, and evaluation of chitosan-zinc selenide nanoparticles for visible-light-induced degradation of tartrazine and sunset yellow dyes. ENVIRONMENTAL RESEARCH 2022; 213:113722. [PMID: 35728638 DOI: 10.1016/j.envres.2022.113722] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Employing dyes in different industrial sectors has produced a serious threat to the environment and living organisms of water bodies and land. For the decontamination of such toxic dyes, efforts have been made to develop an efficient, feasible, and low maintenance processes. In this context, chitosan-zinc selenide (CS-ZnSe) nanoparticles were prepared through chemical reduction method as the efficient photocatalysts for the decontamination of toxic dyes through photocatalysis. Photocatalyst's synthesis was confirmed with the help of FTIR spectroscopy. XRD indicated the hexagonal crystal structure of the CS-ZnSe with a crystallite size of 12 nm. SEM micrographs showed the average nano photocatalyst size as 25 nm. EDX analysis was employed to determine the elemental composition of the CS-ZnSe. An excellent photocatalytic degradation efficiency for tartrazine and sunset yellow dyes was obtained using CS-ZnSe. The results showed a 98% and 97% degradation efficiency for tartrazine dye and sunset yellow (SY) dye at optimized conditions of time (3 h), pH (5), dye concentration (30 ppm), catalyst dosage (0.09 g and 0.01 g) , and at a temperature of 35 °C. Findings of the photocatalytic degradation process fitted well with first-order kinetics for both the dyes. Rate constant, 'K' value was found to be 0.001362 min-1 and 0.001257 min-1 for tartrazine and SY dyes, respectively. While value for (correlation coefficient, R2) was 0.99307 and 0.99277 for tartrazine and sunset yellow dyes, respectively. Recyclability of the photocatalyst was confirmed using it for consecutive cycles to degrade organic dyes. Results showed that the CH-ZnS possesses excellent efficiency in decontaminating organic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nauman Ali
- Centre of Biotechnology and Microbiology, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Hamayun Khan
- Department of Chemistry, Islamia College University, Peshawar, KP, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
7
|
Yadav A, Kumar H, Sharma R, Kumari R, Thakur M. Quantum dot decorated polyaniline plastic as a multifunctional nanocomposite: experimental and theoretical approach. RSC Adv 2022; 12:24063-24076. [PMID: 36093252 PMCID: PMC9400649 DOI: 10.1039/d2ra03554e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
AgO, CoO, and ZnO (ACZ) mixed metal quantum dots (QDs) were synthesized by the sol-gel process. Polyaniline (PANI) was prepared by the chemical-oxidative technique. An in situ approach was used for the synthesis of ACZ decorated PANI plastic nanocomposites (NCs). TEM, FTIR, FESEM, UV-visible, DSC, Raman, photoluminescence, and XRD techniques were used for characterizing the QDs, PANI, and ACZ decorated PANI NCs. Experimental and theoretical (DFT) studies were used to support the results. NCs were studied for their adsorption, magnetic, photocatalytic, electrical, thermal, photoluminescence, antibacterial, and anticorrosive activities. The plastic NCs of size 35 nm (observed from XRD and TEM) were found to be paramagnetic. UV-visible spectroscopy and DFT techniques were used to observe the optical band gap of NCs and show an almost equal band gap i.e., 2.75 eV. In 1.0 M H2SO4, the NCs show an 82.0% corrosion inhibition efficiency for mild steel. The adsorption power of the silica gel + NCs packed column was higher than normal silica gel column. A very small low-intensity D band in the Raman spectra confirms defect-free NCs. The photocatalytic activity was observed against methyl-red dye in visible light. The thermal stability of plastic NCs was higher than pure PANI and QDs. The NCs were investigated for bactericidal activity against Gram (positive and negative) microorganisms. The ACZ decorated PANI NCs acted as good nanomaterials for adsorption, separation, magnetic, photocatalytic, photoluminescence, antibacterial, electrical, thermal insulator, and anticorrosive agent.
Collapse
Affiliation(s)
- Ankita Yadav
- Chemistry Dept., School of Basic Sciences, Central University of Haryana M.Garh-123029 India
| | - Harish Kumar
- Chemistry Dept., School of Basic Sciences, Central University of Haryana M.Garh-123029 India
| | - Rahul Sharma
- Chemistry Dept., School of Basic Sciences, Central University of Haryana M.Garh-123029 India
| | - Rajni Kumari
- Chemistry Dept., School of Basic Sciences, Central University of Haryana M.Garh-123029 India
| | - Mony Thakur
- Microbiology Dept., School of Life Sciences, Central University of Haryana M.Garh-123029 India
| |
Collapse
|
8
|
Demir M, Taymaz BH, Sarıbel M, Kamış H. Photocatalytic Degradation of Organic Dyes with Magnetically Separable PANI/Fe
3
O
4
Composite under Both UV and Visible‐light Irradiation. ChemistrySelect 2022. [DOI: 10.1002/slct.202103787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Muslum Demir
- Department of Chemical Engineering Osmaniye Korkut Ata University Osmaniye 80000 Turkey
| | - Bircan Haspulat Taymaz
- Department of Chemical Engineering Konya Technical University Selçuklu 42200 Konya Turkey
| | - Muhammet Sarıbel
- Department of Chemical Engineering Konya Technical University Selçuklu 42200 Konya Turkey
| | - Handan Kamış
- Department of Chemical Engineering Konya Technical University Selçuklu 42200 Konya Turkey
| |
Collapse
|