1
|
Abdelfattah EA, El-Bassiony GM. Impact of malathion toxicity on the oxidative stress parameters of the black soldier fly Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae). Sci Rep 2022; 12:4583. [PMID: 35301370 PMCID: PMC8931003 DOI: 10.1038/s41598-022-08564-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
The black soldier fly larvae (BSFL) may serve as a promising tool in the animals feed production industry. The input organic wastes may be contaminated by insecticides that affect both the insect’s mass rearing, and the animals feed process. Therefore, in the current study the assessment of oxidative stress parameters of the black soldier fly (BSF) were investigated to quantify the deleterious effect of malathion-contaminated kitchen waste (1:1 vegetable: fruit waste) container on the insect. The different developmental stages of insect (adult and larva) were exposed to different concentrations (0, 0.005, 0.01, 0.015, and 0.02 mg/mL) of malathion. The results showed that the mean value of the reactive oxygen species (ROS), which included hydrogen peroxide (H2O2) and superoxide anion radicals (O2•-) concentrations were lower in larval stage than in adults, in all treated groups (0, 0.005, 0.01, 0.015, and 0.02 mg/mL malathion concentration). Also, the protein carbonyls amount and lipid peroxides levels were decreased in the 0.02 mg/mL Malathion compared to the control values. However, the cluster analysis revealed slight dissimilar patterns for control insects and the highest malathion concentration (0.02 mg/ml). These stage-related differences could occur from the different growth dynamic functions of larvae and adults. The larvae were distinguished by robust growth, and significant oxygen consumption. The results verified that oxidative stress parameters, especially protein carbonyls and α, α-diphenyl-β-picrylhydrazyl (DPPH) were promising, cheap, quick and cost-effective applications for determining the macromolecules damage, and antioxidant ability of H. illucens enclosed with malathion exposure. These findings described that malathion application induces macromolecules damage mediated through oxidative stress injury.
Collapse
Affiliation(s)
- Eman Alaaeldin Abdelfattah
- Department of Entomology, Faculty of Science, Cairo University, El-Nahda Square, Giza, Cairo, 12613, Egypt.
| | - Ghada M El-Bassiony
- Department of Entomology, Faculty of Science, Cairo University, El-Nahda Square, Giza, Cairo, 12613, Egypt
| |
Collapse
|
2
|
Zhang L, Tang Y, Chen H, Zhu X, Gong X, Wang S, Luo J, Han Q. Arylalkalamine N-acetyltransferase-1 acts on a secondary amine in the yellow fever mosquito, Aedes aegypti. FEBS Lett 2022; 596:1081-1091. [PMID: 35178730 DOI: 10.1002/1873-3468.14316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/06/2022]
Abstract
Arylalkylamine N-acetyltransferase (aaNAT) in Aedes aegypti is primarily involved in cuticle pigmentation and formation. The reported arylalkylamine substrates are all primary amines. In this study, we report a novel substrate, a secondary amine, of Ae. aegypti aaNAT1. The recombinant aaNAT1 protein exhibited high activity to a secondary amine, epinephrine, which has not been reported for any aaNATs previously. Structure-activity relationship study demonstrated that aaNAT1 has an epinephrine binding site, and molecular docking and dynamic simulation showed that epinephrine is quite stable in the active cavity. Further functional studies demonstrated that epinephrine affected mosquito fecundity, egg hatching and development. The new biochemical function of aaNAT1 in metabolizing epinephrine could reduce some negative effects of the compound in the mosquito.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Yu Tang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Xiaojing Zhu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Xue Gong
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Shouchuang Wang
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|