1
|
Dixit A, Pandey H, Rana R, Kumar A, Herojeet R, Lata R, Mukhopadhyay R, Mukherjee S, Sarkar B. Ecological and human health risk assessment of pharmaceutical compounds in the Sirsa River of Indian Himalayas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123668. [PMID: 38442820 DOI: 10.1016/j.envpol.2024.123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The Baddi-Barotiwala-Nalagarh (BBN) region of Indian Himalayas is one of the most important pharmaceutical industrial clusters in Asia. This study investigated the distribution, and ecological and human health risks of four most frequently used pharmaceuticals [ciprofloxacin (CIP), norfloxacin (NOR), cetirizine (CTZ) and citalopram oxalate (ECP)] when co-occurring with metal ions in the Sirsa river water of the BBN region. The concentration range of the selected pharmaceuticals was between 'not detected' to 50 μgL-1 with some exception for CIP (50-100 μgL-1) and CTZ (100-150 μgL-1) in locations directly receiving wastewater discharges. A significant correlation was found between the occurrences of NOR and Al (r2 = 0.65; p = 0.01), and CTZ and K (r2 = 0.50; p = 0.01) and Mg (r2 = 0.50; p = 0.01). A high-level ecological risk [risk quotient (RQ) > 1] was observed for algae from all the pharmaceuticals. A medium-level risk (RQ = 0.01-0.1) was observed for Daphnia from CIP, NOR and ECP, and a high-level risk from CTZ. A low-level risk was observed for fishes from CIP and NOR, whereas CTZ and ECP posed a high-level risk to fishes. The overall risk to ecological receptors was in the order: CTZ > CIP > ECP > NOR. Samples from the river locations receiving water from municipal drains or situated near landfill and pharmaceutical factories exhibited RQ > 1 for all pharmaceuticals. The average hazard quotient (HQ) values for the compounds followed the order: CTZ (0.18) > ECP (0.15) > NOR (0.001) > CIP (0.0003) for children (0-6 years); ECP (0.49) > CTZ (0.29) > NOR (0.005) > CIP (0.001) for children (7-17 years), and ECP (0.34) > CTZ (0.21) > NOR (0.007) > CIP (0.001) for adults (>17 years). The calculated risk values did not readily confirm the status of water as safe or unsafe because the values of predicted no-effect concentration (PNEC) would depend on various other environmental factors such as quality of the toxicity data, and species sensitivity and distribution, which warrants further research.
Collapse
Affiliation(s)
- Arohi Dixit
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India; Galgotias College of Engineering and Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Himanshu Pandey
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rajiv Rana
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Anil Kumar
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India; School of Health Sciences, Amity University Punjab, Mohali, 140306, India
| | - Rajkumar Herojeet
- Department of Environmental Studies, Post Graduate Government College, Sector 11, Chandigarh, India
| | - Renu Lata
- G.B. Pant National Institute of Himalayan Environment, Mohal-Kullu, 175126, Himachal Pradesh, India
| | - Raj Mukhopadhyay
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, 15213, United States; Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Santanu Mukherjee
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA14YQ, United Kingdom; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
2
|
Melatonin: highlighting its use as a potential treatment for SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:143. [PMID: 35187603 PMCID: PMC8858600 DOI: 10.1007/s00018-021-04102-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin’s ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.
Collapse
|