1
|
Vaccarella E, Massimi L, Canepari S. Assessment of oxidative stress induced by atmospheric particulate matter: from acellular and cellular assays to the use of model and experimental organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178651. [PMID: 39892228 DOI: 10.1016/j.scitotenv.2025.178651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Oxidative stress is considered one of the major mechanisms by which atmospheric particulate matter (PM) can induce adverse effects on living systems. Recently, the assessment of PM-induced oxidative stress effects has gained importance, and many efforts have been invested in identifying the most suitable techniques for evaluating PM toxicological potential. This paper briefly resumes the current knowledge and criticisms related to the application of the OP and cellular assays and systematically reviews the studies focused on the assessment of PM-induced oxidative stress using model or experimental organisms. Currently, the most widely used techniques are acellular oxidative potential (OP) assays, which allow for a quick and relatively low-cost assessment of the OP of PM; however, their biological representativeness has still to be confirmed. Other popular techniques are based on the exposure of different cell lines, which allows for assessing different biological outcomes; however, they are based on simple systems unable to properly represent the response complexity of a complete biological organism. Another issue related to both OP and cellular assays is that they are mainly applied to the extracts of sampled PM filters, with a possible alteration of the actual oxidizing properties of the sample. Conversely, the use of model or experimental organisms for the assessment of PM-induced oxidative stress is less frequent in the literature, even though this would enable the evaluation of multiple stress response pathways and, in some cases, the prevention of any physicochemical alteration of PM by in situ exposure. In this review, we analyzed available papers focused on the study of oxidative stress effects induced by PM in plant and lower animal model/experimental organisms. In our opinion, increased employment of model and experimental organisms may overcome most of the criticisms shown by conventional methods.
Collapse
Affiliation(s)
- Emanuele Vaccarella
- Sapienza University of Rome, Environmental Biology Department, Rome 00185, Italy
| | - Lorenzo Massimi
- Sapienza University of Rome, Environmental Biology Department, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Monterotondo St. (Rome), 00015, Italy.
| | - Silvia Canepari
- Sapienza University of Rome, Environmental Biology Department, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Monterotondo St. (Rome), 00015, Italy
| |
Collapse
|
2
|
Ghosh A, Dutta M, Chatterjee A. Contrasting features of winter-time PM 2.5 pollution and PM 2.5-toxicity based on oxidative potential: A long-term (2016-2023) study over Kolkata megacity at eastern Indo-Gangetic Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176640. [PMID: 39362548 DOI: 10.1016/j.scitotenv.2024.176640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
The present study is an attempt to understand the level of PM2.5 pollution and its toxicity based on the oxidative potential (OP) during the winter-time pollution period over Kolkata, a megacity at the eastern most parts of Indo-Gangetic Plain (IGP) during the period of 2016-2023. We have assessed the effectiveness of the Government of India's national mission, the National Clean Air Program (NCAP) in PM2.5 reduction over this city, and the study revealed that the mission has been efficacious in lessening the PM2.5 load by 28 % from pre-NCAP (2016-2019) to post-NCAP (2021-2023) periods. Several policy interventions reduced the contributions from various anthropogenic sources; however, biomass/solid waste burning remained a major concern with no significant reduction. The results revealed that the volume-weighted OP (OPv) remains mass-independent and the same when PM2.5 remains within 70 μg m-3 (OPv range between 2.7 and 3.1 nmol DTT min-1 m-3). With the rise in PM2.5 mass from 70 μg m-3, OPv boosts up sharply and reaches its peak (at ∼145 μg m-3 during pre-NCAP and ∼105 μg m-3 during post-NCAP) followed by an insignificant change with the further rise in PM2.5. We observed that biomass/solid waste burning is the major concern over Kolkata in the current scenario (post-NCAP) even after NCAP policy interventions. Such high OP-based toxicity of PM2.5 during post-NCAP periods could be minimized if actions are taken against this particular source.
Collapse
Affiliation(s)
- Abhinandan Ghosh
- Department of Chemical Sciences, Bose Institute, EN Block, Sector-V, Salt Lake, Kolkata 700091, India
| | - Monami Dutta
- Department of Chemical Sciences, Bose Institute, EN Block, Sector-V, Salt Lake, Kolkata 700091, India
| | - Abhijit Chatterjee
- Department of Chemical Sciences, Bose Institute, EN Block, Sector-V, Salt Lake, Kolkata 700091, India.
| |
Collapse
|
3
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Plant Defense Mechanisms against Polycyclic Aromatic Hydrocarbon Contamination: Insights into the Role of Extracellular Vesicles. TOXICS 2024; 12:653. [PMID: 39330582 PMCID: PMC11436043 DOI: 10.3390/toxics12090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that pose significant environmental and health risks. These compounds originate from both natural phenomena, such as volcanic activity and wildfires, and anthropogenic sources, including vehicular emissions, industrial processes, and fossil fuel combustion. Their classification as carcinogenic, mutagenic, and teratogenic substances link them to various cancers and health disorders. PAHs are categorized into low-molecular-weight (LMW) and high-molecular-weight (HMW) groups, with HMW PAHs exhibiting greater resistance to degradation and a tendency to accumulate in sediments and biological tissues. Soil serves as a primary reservoir for PAHs, particularly in areas of high emissions, creating substantial risks through ingestion, dermal contact, and inhalation. Coastal and aquatic ecosystems are especially vulnerable due to concentrated human activities, with PAH persistence disrupting microbial communities, inhibiting plant growth, and altering ecosystem functions, potentially leading to biodiversity loss. In plants, PAH contamination manifests as a form of abiotic stress, inducing oxidative stress, cellular damage, and growth inhibition. Plants respond by activating antioxidant defenses and stress-related pathways. A notable aspect of plant defense mechanisms involves plant-derived extracellular vesicles (PDEVs), which are membrane-bound nanoparticles released by plant cells. These PDEVs play a crucial role in enhancing plant resistance to PAHs by facilitating intercellular communication and coordinating defense responses. The interaction between PAHs and PDEVs, while not fully elucidated, suggests a complex interplay of cellular defense mechanisms. PDEVs may contribute to PAH detoxification through pollutant sequestration or by delivering enzymes capable of PAH degradation. Studying PDEVs provides valuable insights into plant stress resilience mechanisms and offers potential new strategies for mitigating PAH-induced stress in plants and ecosystems.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Lee CY, Wu SW, Yang JJ, Chen WY, Chen CJ, Chen HH, Lee YC, Su CH, Kuan YH. Vascular endothelial dysfunction induced by 3-bromofluoranthene via MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation. Arch Toxicol 2024; 98:2247-2259. [PMID: 38635053 PMCID: PMC11169047 DOI: 10.1007/s00204-024-03751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
3-Bromofluoranthene (3-BrFlu) is the secondary metabolite of fluoranthene, which is classified as a polycyclic aromatic hydrocarbon, through bromination and exists in the fine particulate matter of air pollutants. Endothelial dysfunction plays a critical role in the pathogenesis of cardiovascular and vascular diseases. Little is known about the molecular mechanism of 3-BrFlu on endothelial dysfunction in vivo and in vitro assay. In the present study, 3-BrFlu included concentration-dependent changes in ectopic angiogenesis of the sub-intestinal vein and dilation of the dorsal aorta in zebrafish. Disruption of vascular endothelial integrity and up-regulation of vascular endothelial permeability were also induced by 3-BrFlu in a concentration-dependent manner through pro-inflammatory responses in vascular endothelial cells, namely, SVEC4-10 cells. Generation of pro-inflammatory mediator PGE2 was induced by 3-BrFlu through COX2 expression. Expression of COX2 and generation of pro-inflammatory cytokines, including TNFα and IL-6, were induced by 3-BrFlu through phosphorylation of NF-κB p65, which was mediated by phosphorylation of MAPK, including p38 MAPK, ERK and JNK. Furthermore, generation of intracellular ROS was induced by 3-BrFlu, which is associated with the down-regulated activities of the antioxidant enzyme (AOE), including SOD and catalase. We also found that 3-BrFlu up-regulated expression of the AOE and HO-1 induced by 3-BrFlu through Nrf-2 expression. However, the 3-BrFlu-induced upregulation of AOE and HO-1 expression could not be revised the responses of vascular endothelial dysfunction. In conclusion, 3-BrFlu is a hazardous substance that results in vascular endothelial dysfunction through the MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation.
Collapse
Affiliation(s)
- Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan, ROC
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sheng-Wen Wu
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiann-Jou Yang
- Department of BioMedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsin-Hung Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan
- School of Medicine, Institute of Medicine and Public Health, Chung Shan Medical University, Taichung, Taiwan
- Chung Sheng Clinic, Nantou, Taiwan
| | - Yi-Chia Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan, ROC
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Hung Su
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan, ROC.
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Li R, Yan C, Meng Q, Yue Y, Jiang W, Yang L, Zhu Y, Xue L, Gao S, Liu W, Chen T, Meng J. Key toxic components and sources affecting oxidative potential of atmospheric particulate matter using interpretable machine learning: Insights from fog episodes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133175. [PMID: 38086305 DOI: 10.1016/j.jhazmat.2023.133175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 12/02/2023] [Indexed: 02/08/2024]
Abstract
Fog significantly affects the air quality and human health. To investigate the health effects and mechanisms of atmospheric fine particulate matter (PM2.5) during fog episodes, PM2.5 samples were collected from the coastal suburb of Qingdao during different seasons from 2021 to 2022, with the major chemical composition in PM2.5 analyzed. The oxidative potential (OP) of PM2.5 was determined using the dithiothreitol (DTT) method. A positive matrix factorization model was adopted for PM2.5. Interpretable machine learning (IML) was used to reveal and quantify the key components and sources affecting OP. PM2.5 exhibited higher oxidative toxicity during fog episodes. Water-soluble organic carbon (WSOC), NH4+, K+, and water-soluble Fe positively affected the enhancement of DTTV (volume-based DTT activity) during fog episodes. The IML analysis demonstrated that WSOC and K+ contributed significantly to DTTV, with values of 0.31 ± 0.34 and 0.27 ± 0.22 nmol min-1 m-3, respectively. Regarding the sources, coal combustion and biomass burning contributed significantly to DTTV (0.40 ± 0.38 and 0.39 ± 0.36 nmol min-1 m-3, respectively), indicating the significant influence of combustion-related sources on OP. This study provides new insights into the effects of PM2.5 compositions and sources on OP by applying IML models.
Collapse
Affiliation(s)
- Ruiyu Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Caiqing Yan
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Qingpeng Meng
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yang Yue
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yujiao Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Shaopeng Gao
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Weijian Liu
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tianxing Chen
- College of Engineering, University of Washington, 1410 NE Campus Pkwy, Seattle, WA 98195, USA
| | - Jingjing Meng
- College of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
6
|
Luo Y, Yang X, Wang D, Xu H, Zhang H, Huang S, Wang Q, Zhang N, Cao J, Shen Z. Insights the dominant contribution of biomass burning to methanol-soluble PM 2.5 bounded oxidation potential based on multilayer perceptron neural network analysis in Xi'an, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168273. [PMID: 37918731 DOI: 10.1016/j.scitotenv.2023.168273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Atmospheric fine particulate matter (PM2.5) is associated with cardiorespiratory morbidity and mortality due to its ability to generate reactive oxygen species (ROS). Ambient PM2.5 samples were collected during heating and nonheating seasons in Xi'an, China, and the ROS-generation potential of PM2.5 was quantified using the dithiothreitol (DTT) assay. Additionally, positive matrix factorization combined with multilayer perceptron was employed to apportion sources contributing to the oxidation potential of PM2.5. Both the mass concentration of PM2.5 and the volume-based DTT activity (DTTv) were higher during the heating season than during the nonheating season. The primary contributors to DTTv were combustion (biomass and coal) sources during the heating season (>52 %), whereas secondary formation dominated DTT activity during the nonheating season (35.7 %). In addition, the secondary reaction process promoted the generation of intrinsic oxidation potential (OP) of sources. Among all the sources investigated (traffic source, industrial emission, mineral dust, biomass burning, secondary formation and coal combustion), the inherent oxidation potential of biomass burning was the highest, whereas that of mineral dust was the lowest. Our study indicates that anthropogenic sources, especially biomass burning, should be prioritized in PM2.5 toxicity control strategies.
Collapse
Affiliation(s)
- Yu Luo
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Xueting Yang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Diwei Wang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Hongai Zhang
- Department of Neonatology, Shanghai General Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Rd, Songjiang District, Shanghai 201620, China
| | - Shasha Huang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Ningning Zhang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China.
| |
Collapse
|
7
|
Aquilina NJ, Harrison RM. Evaluation of the cancer risk from PAHs by inhalation: Are current methods fit for purpose? ENVIRONMENT INTERNATIONAL 2023; 177:107991. [PMID: 37321069 DOI: 10.1016/j.envint.2023.107991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
There is ample evidence from occupational studies that exposure to a mixture of Polycyclic Aromatic Hydrocarbons (PAHs) is causally associated with an increased incidence of lung cancers. In both occupational atmospheres and ambient air, PAHs are present as a mixture of many compounds, but the composition of the mixture in ambient air differs from that in the occupational atmosphere, and varies in time and space in ambient air. Estimates of cancer risk for PAH mixtures are based upon unit risks which derive from extrapolation of occupational exposure data or animal model data, and in the case of the WHO use one compound, benzo[a]pyrene as a marker for the entire mixture, irrespective of composition. The U.S. EPA has used an animal exposure study to derive a unit risk for inhalation exposure to benzo[a]pyrene alone, and there have been a number of rankings of relative carcinogenic potency for other PAHs which many studies have used to calculate a cancer risk from the PAHs mixture, frequently incorrectly by adding the estimated relative risks of individual compounds, and applying the total "B[a]P equivalent" to the WHO unit risk, which already applies to the entire mixture. Such studies are often based upon data solely for the historic US EPA group of 16 compounds which do not include many of the apparently more potent carcinogens. There are no data for human cancer risk of individual PAHs, and conflicting evidence of additivity of PAH carcinogenicity in mixtures. This paper finds large divergences between risk estimates deriving from the WHO and U.S. EPA methods, as well as considerable sensitivity to the mixture composition, and assumed PAH relative potencies. Of the two methods, the WHO approach appears more likely to provide reliable risk estimates, but recently proposed mixture-based approaches using in vitro toxicity data may offer some advantages.
Collapse
Affiliation(s)
- Noel J Aquilina
- Department of Chemistry, Faculty of Science, University of Malta, Msida MSD 2080, Malta
| | - Roy M Harrison
- Division of Environmental Health and Risk Management and National Centre for Atmospheric Science, School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
8
|
Pietrogrande MC, Colombi C, Cuccia E, Dal Santo U, Romanato L. Seasonal and Spatial Variations of the Oxidative Properties of Ambient PM 2.5 in the Po Valley, Italy, before and during COVID-19 Lockdown Restrictions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1797. [PMID: 36767162 PMCID: PMC9914037 DOI: 10.3390/ijerph20031797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
This study describes the chemical and toxicological characteristics of fine particulate matter (PM2.5) in the Po Valley, one of the largest and most polluted areas in Europe. The investigated samples were collected in the metropolitan area of Milan during the epidemic lockdown and their toxicity was evaluated by the oxidative potential (OP), measured using ascorbic acid (OPAA) and dithiothreitol (OPDTT) acellular assays. The study was also extended to PM2.5 samples collected at different sites in the Po Valley in 2019, to represent the baseline conditions in the area. Univariate correlations were applied to the whole dataset to link the OP responses with the concentrations of the major chemical markers of vehicular and biomass burning emissions. Of the two assays, OPAA was found mainly sensitive towards transition metals released from vehicular traffic, while OPDTT towards the PM carbonaceous components. The impact of the controlling lockdown restrictions on PM2.5 oxidative properties was estimated by comparing the OP values in corresponding time spans in 2020 and 2019. We found that during the full lockdown the OPAA values decreased to 80-86% with respect to the OP data in other urban sites in the area, while the OPDTT values remained nearly constant.
Collapse
Affiliation(s)
- Maria Chiara Pietrogrande
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Cristina Colombi
- Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy
| | - Eleonora Cuccia
- Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy
| | - Umberto Dal Santo
- Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy
| | - Luisa Romanato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| |
Collapse
|