1
|
Harmesa H, Wahyudi AJ, Wong KH, Ikhsani IY. The behaviour of particulate trace metals in marine systems: A review. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106729. [PMID: 39270439 DOI: 10.1016/j.marenvres.2024.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Changes in the ocean temperature, seawater acidity, and oxygen level are parts of global change that may indirectly impact the biogeochemical cycles of trace metals in the marine system, particularly for the particulate phase. The different factors influencing the level of particulate trace metals are interesting topics for investigation. Following up on marine research in the estuary and coastal areas, we specifically review the distribution of particulate trace metals. This review aims to provide an overview of the progress of studies on particulate metals in the marine environment and to understand the factors that influence the level of particulate metals. Spatially, the distribution of particulate trace metals decreases towards the sea due to the influence of salinity, while the temporal distribution portrays the unique feature of each location that differences in metal sources and phytoplankton bloom periods might cause.
Collapse
Affiliation(s)
- Harmesa Harmesa
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol, Jl. Pasir Putih 1, Ancol, Jakarta, 14430, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Kampus UI Depok, Depok, 16424, Indonesia.
| | - A'an Johan Wahyudi
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol, Jl. Pasir Putih 1, Ancol, Jakarta, 14430, Indonesia
| | - Kuo Hong Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Idha Yulia Ikhsani
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol, Jl. Pasir Putih 1, Ancol, Jakarta, 14430, Indonesia
| |
Collapse
|
2
|
Que W, Yi L, Wu Y, Li Q. Analysis of heavy metals in sediments with different particle sizes and influencing factors in a mining area in Hunan Province. Sci Rep 2024; 14:20318. [PMID: 39223289 PMCID: PMC11369138 DOI: 10.1038/s41598-024-71502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Heavy metals mainly exist on the surface of sediment particles and are transported using particulate matter as carriers. Therefore, the particle size of sediment particles can affect the adsorption, release, and migration of heavy metals. This study aim to investigate the distribution characteristics and chemical fraction of Cd, Pb, and As contents in sediments of different particle sizes using the BCR method, and to determine the key factors affecting the distribution of heavy metals through mineralogical methods such as XRD and EDS. The results revealed that the overall content of various forms of heavy metals increases with the decrease of particle size, mainly presents in fine particles. The mineralogical analysis results indicated that fine particles predominantly contained clay minerals such as chlorite and illite and coarse particles mainly include primary minerals. Due to the mining areas in the middle-upstream, Cd, Pb and As were primarily associated with galena, sphalerite and pyrite, respectively. The distribution of heavy metals is jointly influenced by sediment particle size and sediment material composition.
Collapse
Affiliation(s)
- Wenpiao Que
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, China
| | - Liwen Yi
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, China.
- Hunan Normal University Key Laboratory of Geospatial Big Data, Changsha, 410081, China.
| | - Yueting Wu
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qiuping Li
- Nanchang No.10 Middle School, Nanchang, 330000, China
| |
Collapse
|
3
|
de Morais TP, Barreto LS, de Souza TL, Pozzan R, Vargas DÁR, Yamamoto FY, Prodocimo MM, Neto FF, Randi MAF, Ribeiro CADO. Assessing the pollution and ecotoxicological status of the Iguaçu River, southern Brazil: A review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1280-1305. [PMID: 38037232 DOI: 10.1002/ieam.4865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
The degradation of water resources available for human consumption is increasing with the continuous release of chemicals into aquatic environments and their inefficient removal in wastewater treatment. Several watersheds in Brazil, such as the Iguaçu River, are affected by multiple sources of pollution and lack information about their pollution status. The Iguaçu River basin (IRB) has great socioeconomic and environmental relevance to both the supply of water resources and its considerable hydroelectric potential, as well as for the high rate of endemism of its ichthyofauna. Also, the IRB is home to large conservation units, such as the Iguaçu National Park, recognized by UNESCO as a natural World Heritage Site. Thus, this article discusses the chemical pollution in the IRB approaching: (i) the main sources of pollution; (ii) the occurrence of inorganic and organic micropollutants; (iii) the available ecotoxicological data; and (iv) the socioeconomic impacts in three regions of the upper, middle, and lower IRB. Different studies have reported relevant levels of emerging contaminants, persistent organic pollutants, toxic metals, and polycyclic aromatic hydrocarbons detected in the water and sediment samples, especially in the upper IRB region, associated with domestic and industrial effluents. Additionally, significant concentrations of pesticides and toxic metals were also detected in the lower IRB, revealing that agricultural practices are also relevant sources of chemicals for this watershed. More recently, studies indicated an association between fish pathologies and the detection of micropollutants in the water and sediments in the IRB. The identification of the main sources of pollutants, associated with the distribution of hazardous chemicals in the IRB, and their potential effects on the biota, as described in this review, represent an important strategy to support water management by public authorities for reducing risks to the local endemic biodiversity and exposed human populations. Integr Environ Assess Manag 2024;20:1280-1305. © 2023 SETAC.
Collapse
Affiliation(s)
| | | | | | - Roberta Pozzan
- Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Flávia Yoshie Yamamoto
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), São Vicente, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
4
|
Phung TXB, Le TPQ, Da Le N, Hoang TTH, Nguyen TMH, Rochelle-Newall E, Nguyen TAH, Duong TT, Pham TMH, Nguyen TD. Metal contamination, their ecological risk, and relationship with other variables in surface sediments of urban rivers in a big city in Asia: case study of Hanoi, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22362-22379. [PMID: 38409380 DOI: 10.1007/s11356-024-32549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Urban rivers are significantly impacted by anthropogenic pressure. This study presents the updated assessment of the concentrations of 11 metals and other variables (pH, total organic carbon (TOC) and nutrients (total nitrogen, total phosphorus, and total silica)) in the sediments of four urban rivers in inner Hanoi city, Vietnam, during the period 2020-2022. The mean concentrations of Fe, Zn, As, and Cr were higher than the permissible values of the Vietnam National technical regulation on the surface sediment quality. Moreover, Zn and Cr were at the severe effect level of the US EPA guidelines for sediment quality. The calculation of pollution indices (Igeo and EF) demonstrated that Mn, Ni, and Fe were from natural sources whereas other metals were from both anthropogenic and natural sources. The ecological risk index revealed that metals in Hanoi riverine sediments were classified at considerable ecological risk. High values of metals, TOC, and nutrients in the sediments of these urban rivers mostly originate from the accumulation of untreated urban wastewater that is enhanced by low river discharge. Our results may provide scientific base for better management decisions to ensure environmental protection and sustainable development of Hanoi city.
Collapse
Affiliation(s)
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
| | - Nhu Da Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Thu Ha Hoang
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Mai Huong Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Emma Rochelle-Newall
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Sorbonne Université, Université Paris-Est Créteil, IRD, CNRS, INRA, Paris, France
| | - Thi Anh Huong Nguyen
- Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University-Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Thi Thuy Duong
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Mai Huong Pham
- Hanoi University of Industry, 298, Cau Dien, Bac Tu Liem, Hanoi, Vietnam
| | - Tien Dat Nguyen
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
5
|
Morales-García SS, Pérez-Escamilla PDA, Sujitha SB, Godwyn-Paulson P, Zúñiga-Cabezas AF, Jonathan MP. Geochemical elements in suspended particulate matter of Ensenada de La Paz Lagoon, Baja California Peninsula, Mexico: Sources, distribution, mass balance and ecotoxicological risks. J Environ Sci (China) 2024; 136:422-436. [PMID: 37923452 DOI: 10.1016/j.jes.2022.08.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2023]
Abstract
The present study aimed to evaluate multi-element concentrations (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr) in suspended particulate material (SPM) collected from Ensenada de La Paz (ELP) lagoon, Baja California Sur, Mexico in two different periods (September and May) to comprehend their origin, geochemical behavior, mass transfer and associated ecotoxicological risks. The 24 hr variation coefficient of volumetric SPM levels were found to be 51.7% in September and 40.5% in May, signifying the effects of oceanic waters. The calculated enrichment factor (EF) values for all the studied elements were of higher magnitude because of the high surface area and oxide nature of SPM, and in this study, Mo had the highest EF of 46.77 probably due to its origin from continental weathering. From the ecotoxicological perspective, the integrated toxic risk index revealed low toxic risk to the benthic community. However, the mean-ERM-Quotient calculated using the particulate concentrations of As, Cd, Cr, Cu, Ni, Pb indicated 9% probability of toxicity to biota. The comprehensive geochemical and ecotoxicological assessment of particulate metal concentrations in the ELP lagoon signify low to moderate contamination.
Collapse
Affiliation(s)
- Sandra Soledad Morales-García
- Instituto Politécnico Nacional (IPN), Centro Mexicano para la Producción más Limpia (CMPL), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340, Ciudad de México, Mexico.
| | - Pilar de Acacia Pérez-Escamilla
- Instituto Politécnico Nacional (IPN), Centro Mexicano para la Producción más Limpia (CMPL), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340, Ciudad de México, Mexico
| | - Suresh Babu Sujitha
- Instituto Politécnico Nacional (IPN), Escuela Superior de Ingeniería y Arquitectura (ESIA), Unidad Ticomán, Calz. Ticomán 600, Delg. Gustavo A. Madero, C.P. 07340, Ciudad de México (CDMX), Mexico
| | - Pichaimani Godwyn-Paulson
- Instituto Politécnico Nacional (IPN), Escuela Superior de Ingeniería y Arquitectura (ESIA), Unidad Ticomán, Calz. Ticomán 600, Delg. Gustavo A. Madero, C.P. 07340, Ciudad de México (CDMX), Mexico; Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340, Ciudad de México, México
| | - Andrés Felipe Zúñiga-Cabezas
- Instituto Politécnico Nacional (IPN), Centro Mexicano para la Producción más Limpia (CMPL), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340, Ciudad de México, Mexico
| | - Muthuswamy Ponniah Jonathan
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340, Ciudad de México, México
| |
Collapse
|
6
|
Ye H, Tang C, Cao Y, Hou E. Sources and fates of particulate organic matter in inland waters with complex land use patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162568. [PMID: 36889391 DOI: 10.1016/j.scitotenv.2023.162568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 05/06/2023]
Abstract
Elucidating the sources of particulate organic matter (POM) is the foundation for understanding their fates and the seasonal variation of their movement from the land-to-ocean aquatic continuum (LOAC). The POM from different sources has different reactivity, which determines their fates. However, the key link between the sources and fates of POM, especially in the complex land use watersheds in bays is still unclear. Stable isotopes and contents of organic carbon and nitrogen were applied to reveal them in a complex land use watershed with different gross domestic production (GDP) in a typical Bay, China. Our results showed that the POMs preserved in suspended particulate organic matter (SPM) were weakly controlled by assimilation and decomposition in the main channels. Source apportionments of SPM in the rural area were controlled by soil (46 % ~ 80 %), especially inert soils eroded from land to water due to precipitation. The contribution of phytoplankton resulted from slower water velocity and longer residence time in the rural area. The soil (47 % ~ 78 %) and manure and sewage (10 % ~ 34 %) were the two major contributors to SOMs in the developed and developing urban areas. The manure and sewage were important sources of active POM in the urbanization of different LUI, which showed discrepancies in the three urban areas (10 % ~ 34 %). Due to soil erosion and the most intensive industry supported by GDP, the soil (45 % ~ 47 %) and industrial wastewater (24 % ~ 43 %) were the two major contributors to SOMs in the industrial urban area. This study demonstrated the close relationship between the sources and fates of POM with complex land use patterns, which could reduce uncertainties in future estimates of the LOAC fluxes and secure ecological and environmental barriers in a bay area.
Collapse
Affiliation(s)
- Huijun Ye
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510006, China
| | - Changyuan Tang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China; School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China.
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510006, China
| |
Collapse
|
7
|
Radomirović M, Miletić A, Onjia A. Accumulation of heavy metal(loid)s and polycyclic aromatic hydrocarbons in the sediment of the Prahovo Port (Danube) and associated risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:323. [PMID: 36692645 DOI: 10.1007/s10661-023-10926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The current study investigated the concentrations, possible sources, toxicity, and ecological risk of eight heavy metal(loid)s (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) and sixteen priority polycyclic aromatic hydrocarbons (PAHs) in surface sediments in the port of Prahovo (Danube, Serbia). Among the examined HMs, the most abundant was Cu (38.3 mg/kg), followed by Zn. The Σ16PAHs concentrations ranged from 25 to 112.5 µg/kg, with 4-ring PAHs (17.3 µg/kg) being the most dominant in the study area. The mean and maximum values of HMs and PAHs obtained in this study were below the national regulatory limits and within environmental criteria. Particularly significant correlations between As, Cd, Cr, Ni, Pb, Zn, 5-, 6-ring PAHs, as well as between Pb and Hg, indicated their similar anthropogenic sources, pathways, and adsorption mechanisms. These findings were confirmed by cluster analysis and principal component analysis. Diagnostic ratios demonstrated that contamination in inner port stations was characterized by pyrogenic sources, while PAHs of petrogenic origin prevailed in samples near the port entrance. The mean ERM quotient (mERMq), toxic risk index (TRI), and toxic equivalent quotient (TEQ) were also calculated to assess the toxicity of the investigated HMs and PAHs in sediments. Positive matrix factorization suggested four potential sources as the main components of sediment contamination, whereas the risk assessment indicated a low or relatively insignificant risk of adverse biological effects from the combined toxicity of HMs and PAHs for the entire study area.
Collapse
Affiliation(s)
- Milena Radomirović
- Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000, Belgrade, Serbia.
| | - Andrijana Miletić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia
| |
Collapse
|
8
|
Fan J, Deng L, Wang W, Yi X, Yang Z. Contamination, Source Identification, Ecological and Human Health Risks Assessment of Potentially Toxic-Elements in Soils of Typical Rare-Earth Mining Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15105. [PMID: 36429823 PMCID: PMC9690513 DOI: 10.3390/ijerph192215105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The mining and leaching processes of rare-earth mines can include the entry of potentially toxic elements (PTEs) into the environment, causing ecological risks and endangering human health. However, the identification of ecological risks and sources of PTEs in rare-earth mining areas is less comprehensive. Hence, we determine the PTE (Co, Cr, Cu, Mn, Ni, Pb, Zn, V) content in soils around rare-earth mining areas in the south and analyze the ecological health risks, distribution characteristics, and sources of PTEs in the study area using various indices and models. The results showed that the average concentrations of Co, Mn, Ni, Pb and Zn were higher than the soil background values, with a maximum of 1.62 times. The spatial distribution of PTEs was not homogeneous and the hot spots were mostly located near roads and mining areas. The ecological risk index and the non-carcinogenic index showed that the contribution was mainly from Co, Pb, and Cr, which accounted for more than 90%. Correlation analysis and PMF models indicated that eight PTEs were positively correlated, and rare-earth mining operations (concentration of 22.85%) may have caused Pb and Cu enrichment in soils in the area, while other anthropogenic sources of pollution were industrial emissions and agricultural pollution. The results of the study can provide a scientific basis for environmental-pollution assessment and prevention in rare-earth mining cities.
Collapse
Affiliation(s)
- Jiajia Fan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Li Deng
- Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining 810007, China
| | - Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiu Yi
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Zhiping Yang
- Jiangxi Research Academy of Ecological Civilization, Nanchang 330036, China
| |
Collapse
|